1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
|
# Copyright (c) 2012-2024 Manfred Moitzi
# License: MIT License
import math
from math import isclose
from ezdxf.math import (
rational_bspline_from_arc,
rational_bspline_from_ellipse,
ConstructionEllipse,
ConstructionArc,
BSpline,
open_uniform_bspline,
)
from ezdxf.math.bspline import nurbs_arc_parameters, required_knot_values
DEFPOINTS = [
(0.0, 0.0, 0.0),
(10.0, 20.0, 20.0),
(30.0, 10.0, 25.0),
(40.0, 10.0, 25.0),
(50.0, 0.0, 30.0),
]
DEFWEIGHTS = [1, 10, 10, 10, 1]
def test_rbspline():
curve = BSpline(DEFPOINTS, order=3, weights=DEFWEIGHTS)
expected = RBSPLINE
points = list(curve.approximate(40))
for rpoint, epoint in zip(points, expected):
epx, epy, epz = epoint
rpx, rpy, rpz = rpoint
assert isclose(epx, rpx)
assert isclose(epy, rpy)
assert isclose(epz, rpz)
def test_rbsplineu():
curve = open_uniform_bspline(DEFPOINTS, order=3, weights=DEFWEIGHTS)
expected = RBSPLINEU
points = list(curve.approximate(40))
for rpoint, epoint in zip(points, expected):
epx, epy, epz = epoint
rpx, rpy, rpz = rpoint
assert isclose(epx, rpx)
assert isclose(epy, rpy)
assert isclose(epz, rpz)
def test_rational_spline_from_circular_arc_has_expected_parameters():
arc = ConstructionArc(end_angle=90)
spline = rational_bspline_from_arc(end_angle=arc.end_angle)
assert spline.degree == 2
cpoints = spline.control_points
assert len(cpoints) == 3
assert cpoints[0].isclose((1, 0, 0))
assert cpoints[1].isclose((1, 1, 0))
assert cpoints[2].isclose((0, 1, 0))
weights = spline.weights()
assert len(weights) == 3
assert weights[0] == 1.0
assert weights[1] == math.cos(math.pi / 4)
assert weights[2] == 1.0
# as BSpline constructor()
s2 = BSpline.from_arc(arc)
assert spline.control_points == s2.control_points
def test_rational_spline_from_circular_arc_has_same_end_points():
arc = ConstructionArc(start_angle=30, end_angle=330)
spline = rational_bspline_from_arc(
start_angle=arc.start_angle, end_angle=arc.end_angle
)
assert arc.start_point.isclose(spline.control_points[0])
assert arc.end_point.isclose(spline.control_points[-1])
def test_rational_spline_from_elliptic_arc_has_expected_parameters():
ellipse = ConstructionEllipse(
center=(1, 1),
major_axis=(2, 0),
ratio=0.5,
start_param=0,
end_param=math.pi / 2,
)
spline = rational_bspline_from_ellipse(ellipse)
assert spline.degree == 2
cpoints = spline.control_points
assert len(cpoints) == 3
assert cpoints[0].isclose((3, 1, 0))
assert cpoints[1].isclose((3, 2, 0))
assert cpoints[2].isclose((1, 2, 0))
weights = spline.weights()
assert len(weights) == 3
assert weights[0] == 1.0
assert weights[1] == math.cos(math.pi / 4)
assert weights[2] == 1.0
# as BSpline constructor()
s2 = BSpline.from_ellipse(ellipse)
assert spline.control_points == s2.control_points
def test_rational_spline_from_elliptic_arc_has_same_end_points():
ellipse = ConstructionEllipse(
center=(1, 1),
major_axis=(2, 0),
ratio=0.5,
start_param=math.radians(30),
end_param=math.radians(330),
)
start_point = ellipse.start_point
end_point = ellipse.end_point
spline = rational_bspline_from_ellipse(ellipse)
assert start_point.isclose(spline.control_points[0])
assert end_point.isclose(spline.control_points[-1])
def test_nurbs_arc_parameter_quarter_arc_1_segment():
control_points, weights, knots = nurbs_arc_parameters(
start_angle=0, end_angle=math.pi / 2, segments=1
)
assert len(control_points) == 3
assert len(weights) == len(control_points)
assert len(knots) == required_knot_values(len(control_points), order=3)
assert control_points[0].isclose((1, 0, 0))
assert control_points[1].isclose((1, 1, 0))
assert control_points[2].isclose((0, 1, 0))
assert weights[0] == 1.0
assert weights[1] == math.cos(math.pi / 4)
assert weights[2] == 1.0
def test_nurbs_arc_parameter_quarter_arc_4_segments():
control_points, weights, knots = nurbs_arc_parameters(
start_angle=0, end_angle=math.pi / 2, segments=4
)
assert len(control_points) == 9
assert len(weights) == len(control_points)
assert len(knots) == required_knot_values(len(control_points), order=3)
def test_nurbs_arc_parameter_full_circle():
control_points, weights, knots = nurbs_arc_parameters(
start_angle=0, end_angle=2 * math.pi, segments=4
)
cos_pi_4 = math.cos(math.pi / 4)
assert knots == [
0.0,
0.0,
0.0,
0.25,
0.25,
0.5,
0.5,
0.75,
0.75,
1.0,
1.0,
1.0,
]
assert weights == [
1.0,
cos_pi_4,
1.0,
cos_pi_4,
1.0,
cos_pi_4,
1.0,
cos_pi_4,
1.0,
]
RBSPLINE = [
[0.0, 0.0, 0.0],
[6.523511823865181, 12.435444414243, 12.618918184289209],
[8.577555396711936, 15.546819156540385, 16.02930664760543],
[9.79458577064345, 16.834444293293426, 17.66086246769147],
[10.73345259391771, 17.441860465116278, 18.64937388193202],
[11.566265060240964, 17.710843373493976, 19.337349397590362],
[12.366884232222603, 17.777396083819994, 19.864307798007555],
[13.17543722061015, 17.70449376519489, 20.29840796800251],
[14.018691588785048, 17.52336448598131, 20.677570093457945],
[14.918157331307409, 17.249119414324195, 21.025277988811382],
[15.894039735099337, 16.887417218543046, 21.357615894039736],
[16.967671444180215, 16.437431711549586, 21.68680506459284],
[18.163471241170534, 15.893037336024218, 22.023208879919274],
[19.510974923394407, 15.242949158901883, 22.376649365267962],
[20.9875, 14.5125, 22.74375],
[22.421875, 13.828125, 23.0859375],
[23.799999999999997, 13.2, 23.4],
[25.121875000000003, 12.628125000000004, 23.685937500000005],
[26.387500000000003, 12.112500000000002, 23.94375],
[27.596875, 11.653125, 24.1734375],
[28.75, 11.25, 24.375],
[29.846874999999997, 10.903125, 24.5484375],
[30.887500000000003, 10.6125, 24.69375],
[31.871875, 10.378125, 24.8109375],
[32.8, 10.2, 24.900000000000002],
[33.671875, 10.078125, 24.9609375],
[34.4875, 10.0125, 24.993750000000002],
[35.24482521418298, 9.999374648239638, 25.00031267588019],
[35.923309788092844, 9.989909182643796, 25.00504540867811],
[36.53191079118195, 9.968506973455877, 25.01574651327206],
[37.086092715231786, 9.933774834437086, 25.03311258278146],
[37.59928171835071, 9.88327923199116, 25.05836038400442],
[38.084112149532714, 9.813084112149534, 25.093457943925237],
[38.553838914594934, 9.716884950199985, 25.14155752490001],
[39.02439024390243, 9.584335279972517, 25.20783236001374],
[39.51807228915663, 9.397590361445783, 25.30120481927711],
[40.07155635062611, 9.123434704830053, 25.438282647584973],
[40.75635967895525, 8.692694871446063, 25.653652564276967],
[41.74410293066476, 7.9342387419585405, 26.03288062902073],
[43.59880402283228, 6.278880130470243, 26.860559934764876],
[50.0, 0.0, 30.0],
]
RBSPLINEU = [
[9.09090909090909, 18.18181818181818, 18.18181818181818],
[9.395802632247573, 18.562935108491285, 18.631536155292444],
[9.798110761252083, 18.762733839599925, 19.012780144471197],
[10.282214894437072, 18.83002869256135, 19.350349021455187],
[10.840282232200128, 18.794098781270048, 19.66003848620911],
[11.469194312796208, 18.672985781990523, 19.952606635071092],
[12.169005932571265, 18.477789031978006, 20.23585588192736],
[12.94215853361622, 18.215018608048418, 20.515808145803625],
[13.793103448275861, 17.887931034482758, 20.79741379310345],
[14.728173496505788, 17.497293218281442, 21.08500935070048],
[15.755627009646302, 17.041800643086816, 21.382636655948552],
[16.88583288443867, 16.518267372223452, 21.69428689121962],
[18.131592164741335, 15.921647413360123, 22.024108488196887],
[19.50861179706793, 15.24491263167766, 22.37660592041512],
[20.9875, 14.5125, 22.74375],
[22.421875, 13.828125, 23.0859375],
[23.8, 13.199999999999998, 23.399999999999995],
[25.121875000000003, 12.628125000000004, 23.685937500000005],
[26.387499999999992, 12.112500000000002, 23.943749999999998],
[27.596874999999997, 11.653125000000001, 24.1734375],
[28.75, 11.25, 24.375],
[29.846875000000004, 10.903125, 24.548437500000002],
[30.887500000000003, 10.6125, 24.69375],
[31.871874999999996, 10.378125, 24.810937499999998],
[32.8, 10.2, 24.900000000000002],
[33.671875, 10.078125, 24.9609375],
[34.4875, 10.0125, 24.99375],
[35.24585039542372, 9.99968741208465, 25.000156293957684],
[35.93671521848317, 9.994977398292315, 25.00251130085384],
[36.564846794892105, 9.984473525777116, 25.007763237111444],
[37.138263665594856, 9.967845659163988, 25.016077170418008],
[37.66363725844023, 9.944551986613734, 25.027724006693134],
[38.146551724137936, 9.913793103448276, 25.043103448275865],
[38.59170115822057, 9.87443914994261, 25.062780425028688],
[39.003038634061646, 9.824916799305457, 25.087541600347276],
[39.383886255924175, 9.763033175355451, 25.118483412322274],
[39.737010904425915, 9.685695958948045, 25.15715202052598],
[40.06466532482549, 9.588454455911952, 25.205772772044025],
[40.36858677532876, 9.464715688090386, 25.267642155954803],
[40.6499313989532, 9.304334569846029, 25.347832715076986],
[40.90909090909091, 9.09090909090909, 25.454545454545453],
]
def test_flattening_issue():
from ezdxf.layouts import VirtualLayout
layout = VirtualLayout()
# this configuration caused an math domain error in distance_point_line_3d()
# sqrt() of negative number, cause by floating point imprecision for very
# small numbers.
e = layout.add_spline(
degree=2,
dxfattribs={
"layer": "0",
"linetype": "Continuous",
"color": 84,
"lineweight": 0,
"extrusion": (0.0, 0.0, 1.0),
"flags": 12,
"knot_tolerance": 1e-09,
"control_point_tolerance": 1e-10,
},
)
e.control_points = [
(696603.8306266892, 5711646.357537143, -2.8298889e-09),
(696603.8352219285, 5711646.36068357, -2.8298889e-09),
(696603.8392015211, 5711646.363408451, -2.8298889e-09),
]
e.knots = [
-6.110343499933633,
-6.110343499933633,
-6.110343499933633,
-4.326590114514485,
-4.326590114514485,
-4.326590114514485,
]
e.weights = [
1.607007851100765,
1.731310340973351,
1.731310340973339,
]
points = list(e.flattening(0.01))
assert len(points) > 4
|