File: test_623_rbspline.py

package info (click to toggle)
ezdxf 1.4.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 104,528 kB
  • sloc: python: 182,341; makefile: 116; lisp: 20; ansic: 4
file content (314 lines) | stat: -rw-r--r-- 11,000 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
# Copyright (c) 2012-2024 Manfred Moitzi
# License: MIT License

import math
from math import isclose

from ezdxf.math import (
    rational_bspline_from_arc,
    rational_bspline_from_ellipse,
    ConstructionEllipse,
    ConstructionArc,
    BSpline,
    open_uniform_bspline,
)
from ezdxf.math.bspline import nurbs_arc_parameters, required_knot_values

DEFPOINTS = [
    (0.0, 0.0, 0.0),
    (10.0, 20.0, 20.0),
    (30.0, 10.0, 25.0),
    (40.0, 10.0, 25.0),
    (50.0, 0.0, 30.0),
]
DEFWEIGHTS = [1, 10, 10, 10, 1]


def test_rbspline():
    curve = BSpline(DEFPOINTS, order=3, weights=DEFWEIGHTS)
    expected = RBSPLINE
    points = list(curve.approximate(40))

    for rpoint, epoint in zip(points, expected):
        epx, epy, epz = epoint
        rpx, rpy, rpz = rpoint
        assert isclose(epx, rpx)
        assert isclose(epy, rpy)
        assert isclose(epz, rpz)


def test_rbsplineu():
    curve = open_uniform_bspline(DEFPOINTS, order=3, weights=DEFWEIGHTS)
    expected = RBSPLINEU
    points = list(curve.approximate(40))

    for rpoint, epoint in zip(points, expected):
        epx, epy, epz = epoint
        rpx, rpy, rpz = rpoint
        assert isclose(epx, rpx)
        assert isclose(epy, rpy)
        assert isclose(epz, rpz)


def test_rational_spline_from_circular_arc_has_expected_parameters():
    arc = ConstructionArc(end_angle=90)
    spline = rational_bspline_from_arc(end_angle=arc.end_angle)
    assert spline.degree == 2

    cpoints = spline.control_points
    assert len(cpoints) == 3
    assert cpoints[0].isclose((1, 0, 0))
    assert cpoints[1].isclose((1, 1, 0))
    assert cpoints[2].isclose((0, 1, 0))

    weights = spline.weights()
    assert len(weights) == 3
    assert weights[0] == 1.0
    assert weights[1] == math.cos(math.pi / 4)
    assert weights[2] == 1.0

    # as BSpline constructor()
    s2 = BSpline.from_arc(arc)
    assert spline.control_points == s2.control_points


def test_rational_spline_from_circular_arc_has_same_end_points():
    arc = ConstructionArc(start_angle=30, end_angle=330)
    spline = rational_bspline_from_arc(
        start_angle=arc.start_angle, end_angle=arc.end_angle
    )
    assert arc.start_point.isclose(spline.control_points[0])
    assert arc.end_point.isclose(spline.control_points[-1])


def test_rational_spline_from_elliptic_arc_has_expected_parameters():
    ellipse = ConstructionEllipse(
        center=(1, 1),
        major_axis=(2, 0),
        ratio=0.5,
        start_param=0,
        end_param=math.pi / 2,
    )
    spline = rational_bspline_from_ellipse(ellipse)
    assert spline.degree == 2

    cpoints = spline.control_points
    assert len(cpoints) == 3
    assert cpoints[0].isclose((3, 1, 0))
    assert cpoints[1].isclose((3, 2, 0))
    assert cpoints[2].isclose((1, 2, 0))

    weights = spline.weights()
    assert len(weights) == 3
    assert weights[0] == 1.0
    assert weights[1] == math.cos(math.pi / 4)
    assert weights[2] == 1.0

    # as BSpline constructor()
    s2 = BSpline.from_ellipse(ellipse)
    assert spline.control_points == s2.control_points


def test_rational_spline_from_elliptic_arc_has_same_end_points():
    ellipse = ConstructionEllipse(
        center=(1, 1),
        major_axis=(2, 0),
        ratio=0.5,
        start_param=math.radians(30),
        end_param=math.radians(330),
    )
    start_point = ellipse.start_point
    end_point = ellipse.end_point
    spline = rational_bspline_from_ellipse(ellipse)
    assert start_point.isclose(spline.control_points[0])
    assert end_point.isclose(spline.control_points[-1])


def test_nurbs_arc_parameter_quarter_arc_1_segment():
    control_points, weights, knots = nurbs_arc_parameters(
        start_angle=0, end_angle=math.pi / 2, segments=1
    )

    assert len(control_points) == 3
    assert len(weights) == len(control_points)
    assert len(knots) == required_knot_values(len(control_points), order=3)

    assert control_points[0].isclose((1, 0, 0))
    assert control_points[1].isclose((1, 1, 0))
    assert control_points[2].isclose((0, 1, 0))

    assert weights[0] == 1.0
    assert weights[1] == math.cos(math.pi / 4)
    assert weights[2] == 1.0


def test_nurbs_arc_parameter_quarter_arc_4_segments():
    control_points, weights, knots = nurbs_arc_parameters(
        start_angle=0, end_angle=math.pi / 2, segments=4
    )
    assert len(control_points) == 9
    assert len(weights) == len(control_points)
    assert len(knots) == required_knot_values(len(control_points), order=3)


def test_nurbs_arc_parameter_full_circle():
    control_points, weights, knots = nurbs_arc_parameters(
        start_angle=0, end_angle=2 * math.pi, segments=4
    )
    cos_pi_4 = math.cos(math.pi / 4)
    assert knots == [
        0.0,
        0.0,
        0.0,
        0.25,
        0.25,
        0.5,
        0.5,
        0.75,
        0.75,
        1.0,
        1.0,
        1.0,
    ]
    assert weights == [
        1.0,
        cos_pi_4,
        1.0,
        cos_pi_4,
        1.0,
        cos_pi_4,
        1.0,
        cos_pi_4,
        1.0,
    ]


RBSPLINE = [
    [0.0, 0.0, 0.0],
    [6.523511823865181, 12.435444414243, 12.618918184289209],
    [8.577555396711936, 15.546819156540385, 16.02930664760543],
    [9.79458577064345, 16.834444293293426, 17.66086246769147],
    [10.73345259391771, 17.441860465116278, 18.64937388193202],
    [11.566265060240964, 17.710843373493976, 19.337349397590362],
    [12.366884232222603, 17.777396083819994, 19.864307798007555],
    [13.17543722061015, 17.70449376519489, 20.29840796800251],
    [14.018691588785048, 17.52336448598131, 20.677570093457945],
    [14.918157331307409, 17.249119414324195, 21.025277988811382],
    [15.894039735099337, 16.887417218543046, 21.357615894039736],
    [16.967671444180215, 16.437431711549586, 21.68680506459284],
    [18.163471241170534, 15.893037336024218, 22.023208879919274],
    [19.510974923394407, 15.242949158901883, 22.376649365267962],
    [20.9875, 14.5125, 22.74375],
    [22.421875, 13.828125, 23.0859375],
    [23.799999999999997, 13.2, 23.4],
    [25.121875000000003, 12.628125000000004, 23.685937500000005],
    [26.387500000000003, 12.112500000000002, 23.94375],
    [27.596875, 11.653125, 24.1734375],
    [28.75, 11.25, 24.375],
    [29.846874999999997, 10.903125, 24.5484375],
    [30.887500000000003, 10.6125, 24.69375],
    [31.871875, 10.378125, 24.8109375],
    [32.8, 10.2, 24.900000000000002],
    [33.671875, 10.078125, 24.9609375],
    [34.4875, 10.0125, 24.993750000000002],
    [35.24482521418298, 9.999374648239638, 25.00031267588019],
    [35.923309788092844, 9.989909182643796, 25.00504540867811],
    [36.53191079118195, 9.968506973455877, 25.01574651327206],
    [37.086092715231786, 9.933774834437086, 25.03311258278146],
    [37.59928171835071, 9.88327923199116, 25.05836038400442],
    [38.084112149532714, 9.813084112149534, 25.093457943925237],
    [38.553838914594934, 9.716884950199985, 25.14155752490001],
    [39.02439024390243, 9.584335279972517, 25.20783236001374],
    [39.51807228915663, 9.397590361445783, 25.30120481927711],
    [40.07155635062611, 9.123434704830053, 25.438282647584973],
    [40.75635967895525, 8.692694871446063, 25.653652564276967],
    [41.74410293066476, 7.9342387419585405, 26.03288062902073],
    [43.59880402283228, 6.278880130470243, 26.860559934764876],
    [50.0, 0.0, 30.0],
]

RBSPLINEU = [
    [9.09090909090909, 18.18181818181818, 18.18181818181818],
    [9.395802632247573, 18.562935108491285, 18.631536155292444],
    [9.798110761252083, 18.762733839599925, 19.012780144471197],
    [10.282214894437072, 18.83002869256135, 19.350349021455187],
    [10.840282232200128, 18.794098781270048, 19.66003848620911],
    [11.469194312796208, 18.672985781990523, 19.952606635071092],
    [12.169005932571265, 18.477789031978006, 20.23585588192736],
    [12.94215853361622, 18.215018608048418, 20.515808145803625],
    [13.793103448275861, 17.887931034482758, 20.79741379310345],
    [14.728173496505788, 17.497293218281442, 21.08500935070048],
    [15.755627009646302, 17.041800643086816, 21.382636655948552],
    [16.88583288443867, 16.518267372223452, 21.69428689121962],
    [18.131592164741335, 15.921647413360123, 22.024108488196887],
    [19.50861179706793, 15.24491263167766, 22.37660592041512],
    [20.9875, 14.5125, 22.74375],
    [22.421875, 13.828125, 23.0859375],
    [23.8, 13.199999999999998, 23.399999999999995],
    [25.121875000000003, 12.628125000000004, 23.685937500000005],
    [26.387499999999992, 12.112500000000002, 23.943749999999998],
    [27.596874999999997, 11.653125000000001, 24.1734375],
    [28.75, 11.25, 24.375],
    [29.846875000000004, 10.903125, 24.548437500000002],
    [30.887500000000003, 10.6125, 24.69375],
    [31.871874999999996, 10.378125, 24.810937499999998],
    [32.8, 10.2, 24.900000000000002],
    [33.671875, 10.078125, 24.9609375],
    [34.4875, 10.0125, 24.99375],
    [35.24585039542372, 9.99968741208465, 25.000156293957684],
    [35.93671521848317, 9.994977398292315, 25.00251130085384],
    [36.564846794892105, 9.984473525777116, 25.007763237111444],
    [37.138263665594856, 9.967845659163988, 25.016077170418008],
    [37.66363725844023, 9.944551986613734, 25.027724006693134],
    [38.146551724137936, 9.913793103448276, 25.043103448275865],
    [38.59170115822057, 9.87443914994261, 25.062780425028688],
    [39.003038634061646, 9.824916799305457, 25.087541600347276],
    [39.383886255924175, 9.763033175355451, 25.118483412322274],
    [39.737010904425915, 9.685695958948045, 25.15715202052598],
    [40.06466532482549, 9.588454455911952, 25.205772772044025],
    [40.36858677532876, 9.464715688090386, 25.267642155954803],
    [40.6499313989532, 9.304334569846029, 25.347832715076986],
    [40.90909090909091, 9.09090909090909, 25.454545454545453],
]


def test_flattening_issue():
    from ezdxf.layouts import VirtualLayout

    layout = VirtualLayout()
    # this configuration caused an math domain error in distance_point_line_3d()
    # sqrt() of negative number, cause by floating point imprecision for very
    # small numbers.
    e = layout.add_spline(
        degree=2,
        dxfattribs={
            "layer": "0",
            "linetype": "Continuous",
            "color": 84,
            "lineweight": 0,
            "extrusion": (0.0, 0.0, 1.0),
            "flags": 12,
            "knot_tolerance": 1e-09,
            "control_point_tolerance": 1e-10,
        },
    )
    e.control_points = [
        (696603.8306266892, 5711646.357537143, -2.8298889e-09),
        (696603.8352219285, 5711646.36068357, -2.8298889e-09),
        (696603.8392015211, 5711646.363408451, -2.8298889e-09),
    ]
    e.knots = [
        -6.110343499933633,
        -6.110343499933633,
        -6.110343499933633,
        -4.326590114514485,
        -4.326590114514485,
        -4.326590114514485,
    ]
    e.weights = [
        1.607007851100765,
        1.731310340973351,
        1.731310340973339,
    ]
    points = list(e.flattening(0.01))
    assert len(points) > 4