File: test_703_mesh_builder.py

package info (click to toggle)
ezdxf 1.4.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 104,528 kB
  • sloc: python: 182,341; makefile: 116; lisp: 20; ansic: 4
file content (1069 lines) | stat: -rw-r--r-- 33,485 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
# Copyright (c) 2018-2022, Manfred Moitzi
# License: MIT License
import pytest
import math
import ezdxf
from ezdxf.math import Vec3, BoundingBox, Matrix44, close_vectors
from ezdxf.render import forms
from ezdxf.addons.menger_sponge import MengerSponge
from ezdxf.render.mesh import (
    MeshVertexMerger,
    MeshBuilder,
    MeshTransformer,
    MeshAverageVertexMerger,
    merge_connected_paths,
    merge_full_patch,
    NodeMergingError,
    DegeneratedPathError,
    remove_colinear_face_vertices,
    all_edges,
    get_edge_stats,
    separate_meshes,
    face_normals_after_transformation,
    FaceOrientationDetector,
    volume6,
)
from ezdxf.addons import SierpinskyPyramid
from ezdxf.layouts import VirtualLayout


def test_vertex_merger_indices():
    merger = MeshVertexMerger()
    indices = merger.add_vertices([(1, 2, 3), (4, 5, 6)])
    indices2 = merger.add_vertices([(1, 2, 3), (4, 5, 6)])
    assert indices == indices2


def test_vertex_merger_vertices():
    merger = MeshVertexMerger()
    merger.add_vertices([(1, 2, 3), (4, 5, 6)])
    merger.add_vertices([(1, 2, 3), (4, 5, 6)])
    assert merger.vertices == [(1, 2, 3), (4, 5, 6)]


def test_vertex_merger_index_of():
    merger = MeshVertexMerger()
    merger.add_vertices([(1, 2, 3), (4, 5, 6)])
    assert merger.index((1, 2, 3)) == 0
    assert merger.index((4, 5, 6)) == 1
    with pytest.raises(IndexError):
        merger.index((7, 8, 9))


def test_average_vertex_merger_indices():
    merger = MeshAverageVertexMerger()
    indices = merger.add_vertices([(1, 2, 3), (4, 5, 6)])
    indices2 = merger.add_vertices([(1, 2, 3), (4, 5, 6)])
    assert indices == indices2


def test_average_vertex_merger_vertices():
    merger = MeshAverageVertexMerger()
    merger.add_vertices([(1, 2, 3), (4, 5, 6)])
    merger.add_vertices([(1, 2, 3), (4, 5, 6)])
    assert merger.vertices == [(1, 2, 3), (4, 5, 6)]


def test_average_vertex_merger_index_of():
    merger = MeshAverageVertexMerger()
    merger.add_vertices([(1, 2, 3), (4, 5, 6)])
    assert merger.index((1, 2, 3)) == 0
    assert merger.index((4, 5, 6)) == 1
    with pytest.raises(IndexError):
        merger.index((7, 8, 9))


def test_mesh_builder(msp):
    pyramid = SierpinskyPyramid(level=4, sides=3)
    pyramid.render(msp, merge=False)
    meshes = msp.query("MESH")
    assert len(meshes) == 256


def test_vertex_merger():
    pyramid = SierpinskyPyramid(level=4, sides=3)
    faces = pyramid.faces()
    mesh = MeshVertexMerger()
    for vertices in pyramid:
        mesh.add_mesh(vertices=vertices, faces=faces)
    assert len(mesh.vertices) == 514
    assert len(mesh.faces) == 1024


def test_average_vertex_merger():
    pyramid = SierpinskyPyramid(level=4, sides=3)
    faces = pyramid.faces()
    mesh = MeshAverageVertexMerger()
    for vertices in pyramid:
        mesh.add_mesh(vertices=vertices, faces=faces)
    assert len(mesh.vertices) == 514
    assert len(mesh.faces) == 1024


REGULAR_FACE = Vec3.list([(0, 0, 0), (1, 0, 1), (1, 1, 1), (0, 1, 0)])
IRREGULAR_FACE = Vec3.list([(0, 0, 0), (1, 0, 1), (1, 1, 0), (0, 1, 0)])


def test_has_none_planar_faces():
    mesh = MeshBuilder()
    mesh.add_face(REGULAR_FACE)
    assert mesh.diagnose().has_non_planar_faces() is False
    mesh.add_face(IRREGULAR_FACE)
    assert mesh.diagnose().has_non_planar_faces() is True


def test_scale_mesh():
    mesh = forms.cube(center=False)
    mesh.scale(2, 3, 4)
    bbox = BoundingBox(mesh.vertices)
    assert bbox.extmin.isclose((0, 0, 0))
    assert bbox.extmax.isclose((2, 3, 4))


def test_rotate_x():
    mesh = forms.cube(center=False)
    mesh.rotate_x(math.radians(90))
    bbox = BoundingBox(mesh.vertices)
    assert bbox.extmin.isclose((0, -1, 0))
    assert bbox.extmax.isclose((1, 0, 1))


def test_mesh_bounding_box():
    bbox = forms.cube().bbox()
    assert bbox.extmin.isclose((-0.5, -0.5, -0.5))
    assert bbox.extmax.isclose((0.5, 0.5, 0.5))


def test_get_face_vertices():
    mesh = forms.cube(center=False)
    vertices = mesh.get_face_vertices(0)  # downward bottom face!
    assert close_vectors(vertices, [(0, 0), (0, 1), (1, 1), (1, 0)]) is True


def test_index_error_for_getting_face_vertices():
    mesh = forms.cube(center=False)
    with pytest.raises(IndexError):
        mesh.get_face_vertices(10)


def test_get_face_normal():
    mesh = forms.cube(center=False)
    assert mesh.get_face_normal(0).isclose((0, 0, -1)), "downward bottom face"
    assert mesh.get_face_normal(-1).isclose((0, 0, 1)), "upward top face"


class TestMeshDiagnose:
    def test_empty_mesh_is_not_watertight(self):
        mesh = MeshBuilder()
        assert mesh.diagnose().euler_characteristic != 2

    def test_single_face_mesh_is_not_watertight(self):
        mesh = MeshBuilder()
        mesh.add_face(REGULAR_FACE)
        assert mesh.diagnose().euler_characteristic != 2

    def test_cube_is_watertight(self):
        mesh = forms.cube(center=False)
        assert mesh.diagnose().euler_characteristic == 2

    def test_is_watertight_can_not_detect_vertex_orientation_errors(self):
        mesh = forms.cube(center=False)
        mesh.faces[-1] = tuple(reversed(mesh.faces[-1]))
        assert mesh.diagnose().euler_characteristic == 2

    def test_edge_balance_of_closed_surface_is_not_broken(self):
        mesh = forms.cube(center=False)
        assert mesh.diagnose().is_edge_balance_broken is False

    def test_edge_balance_of_wrong_oriented_faces_is_broken(self):
        mesh = forms.cube(center=False)
        mesh.faces[-1] = tuple(reversed(mesh.faces[-1]))
        assert mesh.diagnose().is_edge_balance_broken is True

    def test_edge_balance_of_doubled_faces_is_broken(self):
        mesh = forms.cube(center=False)
        mesh.faces.append(mesh.faces[-1])
        assert mesh.diagnose().is_edge_balance_broken is True

    def test_total_edge_count_of_closed_surface(self):
        mesh = forms.cube(center=False)
        stats = mesh.diagnose()
        assert stats.total_edge_count() == stats.n_edges * 2

    def test_cube_of_separated_faces_is_not_watertight(self):
        mesh = forms.cube(center=False)
        mesh2 = MeshBuilder()
        for face in mesh.faces_as_vertices():
            mesh2.add_face(face)
        assert mesh2.diagnose().euler_characteristic != 2

    def test_cylinder_is_watertight(self):
        mesh = forms.cylinder()
        assert mesh.diagnose().euler_characteristic == 2

    @pytest.mark.parametrize(
        "surface",
        [forms.cube(), forms.cylinder(), forms.cone(), forms.sphere()],
        ids="cube cylinder cone sphere".split(),
    )
    def test_surface_normals_pointing_outwards(self, surface):
        diagnose = surface.diagnose()
        assert diagnose.estimate_face_normals_direction() > 0.9

    def test_cylinder_with_reversed_cap_normals(self):
        c = forms.cylinder()
        for i, face in enumerate(c.faces):
            if len(face) > 4:
                c.faces[i] = tuple(reversed(c.faces[i]))
        diagnose = c.diagnose()
        assert diagnose.estimate_face_normals_direction() < 0.8
        assert diagnose.is_edge_balance_broken is True

    def test_cube_is_manifold(self):
        diag = forms.cube().diagnose()
        assert diag.is_manifold is True

    def test_mesh_bounding_box(self):
        bbox = forms.cube().diagnose().bbox
        assert bbox.extmin.isclose((-0.5, -0.5, -0.5))
        assert bbox.extmax.isclose((0.5, 0.5, 0.5))

    def test_regular_open_surface(self):
        cube = forms.cube()
        cube.faces.pop()
        diag = cube.diagnose()
        assert diag.is_closed_surface is False

    def test_regular_cube_has_closed_surface(self):
        diag = forms.cube().diagnose()
        assert diag.is_closed_surface is True

    def test_multiple_cubes_have_closed_surface(self):
        cube = forms.cube()
        cube2 = cube.copy()
        cube2.translate(10)
        cube.add_mesh(mesh=cube2)
        diag = cube.diagnose()
        assert diag.is_closed_surface is True

    def test_cube_with_reversed_face_has_closed_surface(self):
        cube = forms.cube()
        cube.faces[0] = tuple(reversed(cube.faces[0]))
        diag = cube.diagnose()
        assert diag.is_closed_surface is True

    def test_non_manifold_cube_has_not_a_closed_surface(self):
        cube = forms.cube()
        cube.faces.append(cube.faces[0])
        diag = cube.diagnose()
        assert diag.is_closed_surface is False

    def test_get_face_normals(self):
        cube = forms.cube()
        assert len(cube.diagnose().face_normals) == 6


def test_flipped_cube_normals_pointing_inwards():
    c = forms.cube()
    c.flip_normals()
    diagnose = c.diagnose()
    assert diagnose.estimate_face_normals_direction() == pytest.approx(-1.0)


@pytest.fixture
def msp():
    return VirtualLayout()


@pytest.fixture(scope="module")
def cube_polyface():
    layout = VirtualLayout()
    p = layout.add_polyface()
    p.append_faces(forms.cube().faces_as_vertices())
    return p


def test_from_empty_polyface(msp):
    empty_polyface = msp.add_polyface()
    b = MeshBuilder.from_polyface(empty_polyface)
    assert len(b.vertices) == 0
    assert len(b.faces) == 0


def test_from_cube_polyface(cube_polyface):
    b = MeshBuilder.from_polyface(cube_polyface)
    assert len(b.vertices) == 24  # unoptimized mesh builder
    assert len(b.faces) == 6


def test_render_polyface(cube_polyface, msp):
    t = MeshTransformer.from_polyface(cube_polyface)
    assert len(t.vertices) == 24  # unoptimized mesh builder
    assert len(t.faces) == 6
    t.render_polyface(msp)
    new_polyface = msp[-1]
    assert new_polyface.dxftype() == "POLYLINE"
    assert new_polyface.is_poly_face_mesh is True
    assert len(new_polyface.vertices) == 8 + 6
    assert new_polyface.vertices[0] is not cube_polyface.vertices[0]


def test_render_3dsolid():
    """Test if the render_3dsolid() method works.

    The ACIS content is tested by the tests for the acis module 529-532.
    """
    # A valid DXF document is required!
    doc = ezdxf.new(ezdxf.DXF2000)
    msp = doc.modelspace()
    cube = forms.cube()
    solid3d = cube.render_3dsolid(msp)
    assert solid3d.dxftype() == "3DSOLID"


def test_from_polymesh(msp):
    polymesh = msp.add_polymesh(size=(4, 4))
    b = MeshBuilder.from_polyface(polymesh)
    n = polymesh.dxf.n_count
    m = polymesh.dxf.m_count
    nfaces = (n - 1) * (m - 1)
    assert len(b.vertices) == nfaces * 4  # unoptimized mesh builder
    assert len(b.faces) == nfaces


def test_from_polyface_type_error(msp):
    polyline = msp.add_polyline3d([(0, 0, 0), (1, 0, 0)])
    with pytest.raises(TypeError):
        MeshBuilder.from_polyface(polyline)

    line = msp.add_line(start=(0, 0, 0), end=(1, 0, 0))
    with pytest.raises(TypeError):
        MeshBuilder.from_polyface(line)


@pytest.fixture
def polyface_181_1(msp):
    e = msp.new_entity(
        "POLYLINE",
        dxfattribs={
            "flags": 48,
            "m_count": 2,
            "n_count": 6,
        },
    )
    e.append_vertex(
        (25041.94191089287, 29272.95055566061, 0.0), dxfattribs={"flags": 64}
    )
    e.append_vertex(
        (25020.29127589287, 29285.45055566061, 0.0), dxfattribs={"flags": 64}
    )
    e.append_vertex(
        (25020.29127589287, 29310.45055566061, 0.0), dxfattribs={"flags": 64}
    )
    e.append_vertex(
        (25041.94191089287, 29322.95055566061, 0.0), dxfattribs={"flags": 64}
    )
    e.append_vertex(
        (25063.59254589287, 29310.45055566061, 0.0), dxfattribs={"flags": 64}
    )
    e.append_vertex(
        (25063.59254589287, 29285.45055566061, 0.0), dxfattribs={"flags": 64}
    )
    e.append_vertex(
        (25041.94191089287, 29272.95055566061, 50.0), dxfattribs={"flags": 64}
    )
    e.append_vertex(
        (25020.29127589287, 29285.45055566061, 50.0), dxfattribs={"flags": 64}
    )
    e.append_vertex(
        (25020.29127589287, 29310.45055566061, 50.0), dxfattribs={"flags": 64}
    )
    e.append_vertex(
        (25041.94191089287, 29322.95055566061, 50.0), dxfattribs={"flags": 64}
    )
    e.append_vertex(
        (25063.59254589287, 29310.45055566061, 50.0), dxfattribs={"flags": 64}
    )
    e.append_vertex(
        (25063.59254589287, 29285.45055566061, 50.0), dxfattribs={"flags": 64}
    )
    return e


def test_from_polyface_182_1(polyface_181_1):
    mesh = MeshVertexMerger.from_polyface(polyface_181_1)
    assert len(mesh.vertices) == 12


@pytest.fixture
def polyface_181_2(msp):
    e = msp.new_entity(
        "POLYLINE",
        dxfattribs={
            "flags": 16,
            "m_count": 6,
            "n_count": 3,
        },
    )
    e.append_vertex(
        (16606.65151901649, 81.88147523282441, 2099.9999999999995),
        dxfattribs={"flags": 64},
    )
    e.append_vertex(
        (16606.65151901649, 81.88147523282441, 1199.9999999999998),
        dxfattribs={"flags": 64},
    )
    e.append_vertex(
        (16606.65151901649, 81.88147523282441, 1199.9999999999998),
        dxfattribs={"flags": 64},
    )
    e.append_vertex(
        (16606.65151901649, 1281.8814752328244, 2099.9999999999995),
        dxfattribs={"flags": 64},
    )
    e.append_vertex(
        (16606.65151901649, 1281.8814752328244, 1199.9999999999998),
        dxfattribs={"flags": 64},
    )
    e.append_vertex(
        (16606.65151901649, 1281.8814752328244, 1199.9999999999998),
        dxfattribs={"flags": 64},
    )
    e.append_vertex(
        (16626.65151901649, 1281.8814752328244, 2099.9999999999995),
        dxfattribs={"flags": 64},
    )
    e.append_vertex(
        (16626.65151901649, 1281.8814752328244, 1199.9999999999998),
        dxfattribs={"flags": 64},
    )
    e.append_vertex(
        (16606.65151901649, 1281.8814752328244, 1199.9999999999998),
        dxfattribs={"flags": 64},
    )
    e.append_vertex(
        (16626.65151901649, 81.88147523282441, 2099.9999999999995),
        dxfattribs={"flags": 64},
    )
    e.append_vertex(
        (16626.65151901649, 81.88147523282441, 1199.9999999999998),
        dxfattribs={"flags": 64},
    )
    e.append_vertex(
        (16606.65151901649, 81.88147523282441, 1199.9999999999998),
        dxfattribs={"flags": 64},
    )
    e.append_vertex(
        (16626.65151901649, 81.88147523282441, 2099.9999999999995),
        dxfattribs={"flags": 64},
    )
    e.append_vertex(
        (16626.65151901649, 81.88147523282441, 2099.9999999999995),
        dxfattribs={"flags": 64},
    )
    e.append_vertex(
        (16606.65151901649, 81.88147523282441, 2099.9999999999995),
        dxfattribs={"flags": 64},
    )
    e.append_vertex(
        (16626.65151901649, 1281.8814752328244, 2099.9999999999995),
        dxfattribs={"flags": 64},
    )
    e.append_vertex(
        (16626.65151901649, 1281.8814752328244, 2099.9999999999995),
        dxfattribs={"flags": 64},
    )
    e.append_vertex(
        (16606.65151901649, 1281.8814752328244, 2099.9999999999995),
        dxfattribs={"flags": 64},
    )
    return e


def test_from_polyface_182_2(polyface_181_2):
    mesh = MeshVertexMerger.from_polyface(polyface_181_2)
    assert len(mesh.vertices) == 8


def test_mesh_subdivide():
    c = forms.cube().scale_uniform(10).subdivide(2)
    assert len(c.vertices) == 2 * 25 + 3 * 16
    assert len(c.faces) == 16 * 6


def test_debug_coplanar_faces():
    source = MeshBuilder()
    source.vertices = [
        Vec3(-5.0, -5.0, -5.0),  # 0
        Vec3(-5.0, 0.0, -5.0),  # 1
        Vec3(0.0, 0.0, -5.0),  # 2
        Vec3(0.0, -5.0, -5.0),  # 3
        Vec3(-5.0, 5.0, -5.0),  # 4
        Vec3(0.0, 5.0, -5.0),  # 5
        Vec3(5.0, 5.0, -5.0),  # 6
        Vec3(5.0, 0.0, -5.0),  # 7
        Vec3(5.0, -5.0, -5.0),  # 8
    ]
    source.faces = [
        (0, 1, 2, 3),
        (4, 5, 2, 1),
        (6, 7, 2, 5),
        (8, 3, 2, 7),
    ]
    optimized_cube = source.merge_coplanar_faces()
    assert len(optimized_cube.faces) == 1
    assert len(optimized_cube.vertices) == 4


def test_merge_coplanar_faces():
    c = forms.cube().scale_uniform(10).subdivide(1)
    assert len(c.vertices) == 26
    assert len(c.faces) == 24
    optimized_cube = c.merge_coplanar_faces()
    assert len(optimized_cube.faces) == 6
    assert len(optimized_cube.vertices) == 8


def test_merge_disk():
    m = MeshVertexMerger()
    vertices = list(forms.circle(8, close=True))
    for v1, v2 in zip(vertices, vertices[1:]):
        m.add_face([Vec3(), v1, v2])
    assert len(m.vertices) == 9
    assert len(m.faces) == 8

    m2 = m.merge_coplanar_faces()
    assert len(m2.vertices) == 8
    assert len(m2.faces) == 1


def test_merge_coplanar_faces_in_two_passes():
    c = forms.cube().scale_uniform(10).subdivide(2)
    assert len(c.vertices) == 98
    assert len(c.faces) == 96
    optimized_cube = c.merge_coplanar_faces(passes=2)
    assert len(optimized_cube.faces) == 6
    assert len(optimized_cube.vertices) == 8


class TestMergeConnectedPaths:
    @pytest.mark.parametrize(
        "p",
        [
            [1, 2, 3],
            [3, 2, 1],
            [1, 2, 3, 4, 5],
        ],
    )
    def test_non_connected_paths(self, p):
        assert merge_connected_paths(p, [17, 18, 19]) == p

    def test_connected_squares_same_orientation(self):
        # fmt: off
        assert merge_connected_paths([1, 2, 3, 4], [4, 3, 5, 6]) == [
            1, 2, 3, 5, 6, 4,
        ]
        assert merge_connected_paths([1, 2, 3, 4], [4, 5, 6, 1]) == [
            1, 2, 3, 4, 5, 6
        ]
        # fmt: on

    def test_connected_squares_different_orientation(self):
        """The connected structure have to have the same orientation (clockwise
        or counter-clockwise to be merged.
        """
        # fmt: off
        assert merge_connected_paths([1, 2, 3, 4], [6, 5, 3, 4]) == [
            1, 2, 3, 4
        ]
        # fmt: on

    def test_connected_rect_same_orientation(self):
        # fmt: off
        assert merge_connected_paths([1, 2, 3, 4, 5, 6], [6, 5, 4, 7, 8, 9]) == [
            1, 2, 3, 4, 7, 8, 9, 6
        ]
        # fmt: on

    def test_complex_shape(self):
        # fmt: off
        assert merge_connected_paths(
            [1, 2, 3, 4, 5, 6, 7, 8],
            [6, 9, 10, 11, 8, 7],
        ) == [
            1, 2, 3, 4, 5, 6, 9, 10, 11, 8,
        ]
        # fmt: on

    def test_connected_by_one_vertex(self):
        with pytest.raises(NodeMergingError):
            merge_connected_paths([1, 2, 3, 4], [5, 6, 7, 4])

    @pytest.mark.parametrize(
        "p2",
        [
            [5, 6, 7, 4],
            [5, 6, 7, 4, 8],
            [5, 6, 7, 4, 8, 9],
        ],
    )
    def test_connection_error(self, p2):
        with pytest.raises(NodeMergingError):
            merge_connected_paths([1, 2, 3, 4], p2)

    def test_merge_multiple_paths(self):
        p1 = [1, 2, 9, 8]
        p2 = [3, 4, 9, 2]
        p3 = [5, 6, 9, 4]
        p4 = [7, 8, 9, 6]
        p = merge_connected_paths(p1, p2)
        assert p == [1, 2, 3, 4, 9, 8]
        p = merge_connected_paths(p, p3)
        assert p == [1, 2, 3, 4, 5, 6, 9, 8]
        p = merge_connected_paths(p, p4)
        assert p == [1, 2, 3, 4, 5, 6, 7, 8]

    def test_degenerated_path(self):
        """This creates a path [0, 1] which is invalid."""
        open_segments = [0, 1, 2, 3, 4, 5, 6, 7, 8]
        closing_segment = [0, 8, 1]
        with pytest.raises(DegeneratedPathError):
            merge_connected_paths(open_segments, closing_segment)


class TestRemoveColinearVertices:
    @pytest.mark.parametrize(
        "v",
        [
            [],
            [Vec3(0, 0)],
            [Vec3(0, 0), Vec3(1, 0)],
        ],
    )
    def test_simple_cases_without_action(self, v):
        assert list(remove_colinear_face_vertices(v)) == v

    @pytest.mark.parametrize(
        "v",
        [
            [Vec3(0, 0), Vec3(1, 0), Vec3(2, 0)],
            [Vec3(0, 0), Vec3(1, 0), Vec3(2, 0), Vec3(3, 0)],
        ],
    )
    def test_remove_in_between_vertices(self, v):
        assert list(remove_colinear_face_vertices(v)) == [v[0], v[-1]]

    @pytest.mark.parametrize(
        "v",
        [
            [Vec3(0, 0), Vec3(0, 0), Vec3(2, 0)],
            [Vec3(0, 0), Vec3(0, 0), Vec3(0, 0), Vec3(3, 0)],
            [Vec3(0, 0), Vec3(0, 0), Vec3(0, 0), Vec3(0, 0)],
            [Vec3(1, 0), Vec3(1, 0), Vec3(0, 2), Vec3(0, 2)],
        ],
    )
    def test_remove_duplicated_vertices(self, v):
        assert list(remove_colinear_face_vertices(v)) == [v[0], v[-1]]

    def test_remove_in_between_vertices_with_direction_change(self):
        v = [
            Vec3(0, 0),
            Vec3(1, 0),
            Vec3(2, 0),
            Vec3(2, 1),
            Vec3(2, 2),
            Vec3(2, 3),
        ]
        assert list(remove_colinear_face_vertices(v)) == [v[0], v[2], v[-1]]

    def test_subdivided_square(self):
        v = [
            Vec3(-5.0, -5.0, -5.0),
            Vec3(-5.0, 0.0, -5.0),
            Vec3(-5.0, 5.0, -5.0),
            Vec3(0.0, 5.0, -5.0),
            Vec3(5.0, 5.0, -5.0),
            Vec3(5.0, 0.0, -5.0),
            Vec3(5.0, -5.0, -5.0),
            Vec3(0.0, -5.0, -5.0),
        ]
        assert list(remove_colinear_face_vertices(v)) == [
            v[0],
            v[2],
            v[4],
            v[6],
        ]


class TestMergeFullPatch:
    @pytest.mark.parametrize(
        "seg",
        [
            [0, 8, 1],
            [1, 0, 8],
            [8, 1, 0],
        ],
    )
    def test_fill_pie(self, seg):
        open_pie = [0, 1, 2, 3, 4, 5, 6, 7, 8]
        res = merge_full_patch(open_pie, seg)
        assert res == [1, 2, 3, 4, 5, 6, 7, 8]


def test_all_edges_cube():
    mesh = forms.cube()
    edges = list(all_edges(mesh.faces))
    assert len(edges) == 6 * 4
    assert len(set(edges)) == 24


class TestGetEdgeStats:
    @pytest.fixture(scope="class")
    def edges(self):
        mesh = forms.cube()
        return get_edge_stats(mesh.faces)

    def test_unique_edge_count(self, edges):
        assert len(edges) == 12

    def test_sum_of_edge_count(self, edges):
        assert sum(e[0] for e in edges.values()) == 24

    def test_all_balances_are_0(self, edges):
        assert all(e[1] == 0 for e in edges.values()) is True

    def test_invalid_face_orientation_break_the_rules(self):
        faces = forms.cube().faces
        faces[-1] = list(reversed(faces[-1]))
        edges = get_edge_stats(faces)
        assert all(e[1] == 0 for e in edges.values()) is False

    def test_coincident_faces_break_the_rules(self):
        faces = forms.cube().faces
        faces.append(faces[-1])
        edges = get_edge_stats(faces)
        assert all(e[1] == 0 for e in edges.values()) is False

    def test_edge_balance_has_no_meaning_for_open_surfaces(self):
        faces = [(0, 1, 2)]
        edges = get_edge_stats(faces)
        assert all(e[1] != 0 for e in edges.values()) is True


class TestSeparateMeshes:
    def test_separate_a_single_cube_returns_a_single_cube(self):
        c1 = forms.cube()
        result = list(separate_meshes(c1))
        assert len(result) == 1
        c2 = result[0]
        # vertex and face structure keeps stable for single meshes:
        assert c1.vertices == c2.vertices
        assert c1.faces == c2.faces

    def test_separate_menger_sponge(self):
        m1 = MengerSponge().mesh()
        result = list(separate_meshes(m1))
        assert len(result) == 1
        m2 = result[0]
        # vertex and face structure keeps stable for single meshes:
        assert m1.vertices == m2.vertices
        assert m1.faces == m2.faces

    def test_separate_two_cubes(self):
        cubes = forms.cube()
        cubes.translate(10, 0, 0)
        cubes.add_mesh(mesh=forms.cube())
        # a non-broken edge balance is a requirement to work properly:
        assert cubes.diagnose().is_edge_balance_broken is False
        result = list(separate_meshes(cubes))
        assert len(result) == 2

    def test_separate_two_intersecting_cubes(self):
        cubes = forms.cube()
        cubes.translate(0.2, 0.2, 0.2)
        cubes.add_mesh(mesh=forms.cube())
        # a non-broken edge balance is a requirement to work properly:
        assert cubes.diagnose().is_edge_balance_broken is False
        assert len(cubes.separate_meshes()) == 2


class TestNormals:
    @pytest.fixture(scope="class")
    def normals(self):
        return list(forms.cube().face_normals())

    def test_cube_has_six_normals(self, normals):
        assert len(normals) == 6

    def test_all_normals_are_normalized(self, normals):
        assert all(math.isclose(n.magnitude, 1.0) for n in normals) is True

    def test_all_normals_are_different(self, normals):
        assert len(set(normals)) == 6


def test_concave_mesh_tessellation():
    profile = [(0, 0), (10, 0), (10, 10), (8, 10), (8, 2), (0, 2)]
    concave_prism = forms.extrude(
        profile, [(0, 0, 0), (0, 0, 10)], close=True, caps=True
    )
    diag = concave_prism.mesh_tessellation(3).diagnose()
    assert all(len(face) == 3 for face in diag.faces) is True
    assert diag.n_vertices == 12
    assert diag.n_faces == 20
    assert diag.n_edges == 30
    assert diag.is_manifold is True


@pytest.mark.parametrize(
    "sx,sy,sz,expected",
    [
        (1, 1, 1, True),
        (-1, 1, 1, False),
        (1, -1, 1, False),
        (1, 1, -1, False),
        (-1, -1, 1, True),
        (-1, 1, -1, True),
        (1, -1, -1, True),
        (-1, -1, -1, False),
    ],
    ids="none x y z xy xz yz xyz".split(),
)
def test_check_face_normals_after_transformation(sx, sy, sz, expected):
    assert face_normals_after_transformation(Matrix44.scale(sx, sy, sz)) is expected


class TestFaceOrientationDetector:
    def test_cube_has_uniform_face_normals(self):
        fod = FaceOrientationDetector(forms.cube())
        assert fod.has_uniform_face_normals is True
        assert fod.count == (6, 0)
        assert fod.is_manifold is True
        assert fod.all_reachable is True

    def test_multiple_disconnected_cubes(self):
        """A MeshBuilder can contain multiple disconnected meshes.
        Only the mesh which contains the reference face will be processed.

        The attribute all_reachable shows if all faces from the MeshBuilder are
        processed.
        """
        cubes = forms.cube()
        cube1 = forms.cube()
        cube1.translate(10, 0, 0)
        cubes.add_mesh(mesh=cube1)

        fod = FaceOrientationDetector(cubes)
        assert fod.has_uniform_face_normals is True
        assert fod.count == (6, 0)
        assert fod.is_manifold is True
        assert (
            fod.all_reachable is False
        ), "not all faces are reachable from the reference face"

    def test_flipped_cube_faces_are_also_uniform(self):
        """It's always the reference face which determines the forward
        orientation! In this case all face normals are pointing inwards, which
        is also a uniform orientation.
        """
        cube = forms.cube()
        cube.flip_normals()
        fod = FaceOrientationDetector(cube)
        assert fod.has_uniform_face_normals is True
        assert fod.count == (6, 0)
        assert fod.is_manifold is True
        assert fod.all_reachable is True

    def test_modified_cube_has_not_uniform_face_normals(self):
        cube = forms.cube()
        cube.faces[-1] = tuple(reversed(cube.faces[-1]))
        fod = FaceOrientationDetector(cube)
        assert fod.has_uniform_face_normals is False
        assert list(fod.backward_faces)[0] == cube.faces[-1]
        assert fod.count == (5, 1)
        assert fod.is_manifold is True
        assert fod.all_reachable is True

    def test_torus_with_uniform_face_normals(self):
        fod = FaceOrientationDetector(forms.torus())
        assert fod.has_uniform_face_normals is True
        assert fod.count == (128, 0)
        assert fod.is_manifold is True
        assert fod.all_reachable is True

    def test_find_all_backward_oriented_faces(self):
        torus = forms.torus()
        # reverse the first face (= reference face)
        torus.faces[0] = tuple(reversed(torus.faces[0]))
        fod = FaceOrientationDetector(torus)
        assert fod.has_uniform_face_normals is False
        assert fod.count == (1, 127)
        assert fod.is_manifold is True
        assert fod.all_reachable is True

    def test_detect_reference_face_orientation(self):
        # Calculation is tested for is_face_normal_pointing_outwards() in 661!
        fod = FaceOrientationDetector(forms.cube())
        assert fod.is_reference_face_pointing_outwards() is True

    def test_regular_open_surface(self):
        cube = forms.cube()
        cube.faces.pop()
        fod = FaceOrientationDetector(cube)
        assert fod.is_closed_surface is False

    def test_regular_cube_has_closed_surface(self):
        fod = FaceOrientationDetector(forms.cube())
        assert fod.is_closed_surface is True

    def test_multiple_cubes_have_closed_surface(self):
        cube = forms.cube()
        cube2 = cube.copy()
        cube2.translate(10)
        cube.add_mesh(mesh=cube2)
        fod = FaceOrientationDetector(cube)
        assert fod.is_closed_surface is True

    def test_cube_with_reversed_face_has_closed_surface(self):
        cube = forms.cube()
        cube.faces[0] = tuple(reversed(cube.faces[0]))
        fod = FaceOrientationDetector(cube)
        assert fod.is_closed_surface is True

    def test_non_manifold_cube_has_not_a_closed_surface(self):
        cube = forms.cube()
        cube.faces.append(cube.faces[0])
        fod = FaceOrientationDetector(cube)
        assert fod.is_closed_surface is False


def test_unify_cube_normals_by_reference_face():
    cube = forms.cube()
    cube.faces[-1] = tuple(reversed(cube.faces[-1]))
    cube2 = cube.unify_face_normals_by_reference()
    fod = FaceOrientationDetector(cube2)
    assert fod.has_uniform_face_normals is True
    assert fod.count == (6, 0)
    assert fod.is_manifold is True
    assert fod.all_reachable is True
    assert fod.is_reference_face_pointing_outwards() is True


@pytest.mark.parametrize("force", [False, True])
def test_force_unified_cube_normals_pointing_outwards(force):
    cube = forms.cube()
    cube.faces[-1] = tuple(reversed(cube.faces[-1]))
    cube2 = cube.unify_face_normals_by_reference(-1, force_outwards=force)
    fod = FaceOrientationDetector(cube2)
    assert fod.is_reference_face_pointing_outwards() is force


def test_unify_cube_normals_by_majority():
    cube = forms.cube()
    # reverse the first face (= reference face)
    cube.faces[0] = tuple(reversed(cube.faces[0]))
    cube2 = cube.unify_face_normals()
    fod = FaceOrientationDetector(cube2)
    assert fod.has_uniform_face_normals is True
    assert fod.count == (6, 0)
    assert fod.is_manifold is True
    assert fod.all_reachable is True


def test_unify_torus_normals_by_majority():
    torus = forms.torus()
    faces = torus.faces
    # remove some faces
    faces = [
        f for i, f in enumerate(faces) if i not in {2, 3, 17, 34, 99, 100, 101, 120}
    ]
    # reverse some face normals
    for i in [0, 3, 17, 34, 99, 100, 101, 119]:
        faces[i] = tuple(reversed(faces[i]))
    torus.faces = faces

    # unify face normals
    unified_torus = torus.unify_face_normals()
    fod = FaceOrientationDetector(unified_torus)
    assert fod.has_uniform_face_normals is True
    assert fod.count == (120, 0)
    assert fod.is_manifold is True
    assert fod.all_reachable is True


def test_volume6():
    assert volume6(Vec3(0, 0, 1), Vec3(2, 0, 1), Vec3(1, 1, 1)) == pytest.approx(2.0)


def test_volume_of_closed_surface():
    diag = forms.cube().diagnose()
    assert diag.volume() == pytest.approx(1.0)


def test_volume_of_surface_with_clockwise_oriented_vertices():
    cube = forms.cube()
    cube.flip_normals()
    assert cube.diagnose().volume() == pytest.approx(-1.0)


@pytest.mark.parametrize(
    "loc",
    [
        (100, 100, 100),
        (-100, -100, -100),
    ],
)
def test_location_of_mesh_is_not_relevant_for_volume_calculation(loc):
    cube = forms.cube()
    cube.translate(loc)
    assert cube.diagnose().volume() == pytest.approx(1.0)


def test_volume_of_an_open_surface_is_null():
    cube = forms.cube()
    del cube.faces[-1]
    assert cube.diagnose().volume() == 0.0


def test_volume_of_two_cubes_in_a_single_mesh_is_invalid():
    cube = forms.cube()
    c1 = forms.cube()
    c1.translate(2, 0, 0)
    cube.add_mesh(mesh=c1)
    assert len(cube.vertices) == 16
    assert len(cube.faces) == 12

    diag = forms.cube().diagnose()
    assert diag.volume() == pytest.approx(1.0)  # invalid result!!!


def test_torus_volume():
    r0 = 1.0
    r1 = 10.0
    real_volume = 2.0 * math.pi**2 * r0**2 * r1
    diag = forms.torus(
        major_count=64, minor_count=32, minor_radius=r0, major_radius=r1
    ).diagnose()
    # less than 2% difference expected:
    assert real_volume * 0.98 < diag.volume() < real_volume


def test_surface_area_of_a_cube():
    diag = forms.cube().diagnose()
    assert diag.surface_area() == pytest.approx(6.0)


def test_surface_area_of_a_torus():
    r0 = 1.0
    r1 = 10.0
    real_area = 4.0 * math.pi**2 * r0 * r1
    diag = forms.torus(
        major_count=64, minor_count=32, minor_radius=r0, major_radius=r1
    ).diagnose()
    # less than 2% difference expected:
    assert real_area * 0.98 < diag.surface_area() < real_area


def test_centroid_of_a_cube():
    diag = forms.cube(center=False).diagnose()
    assert diag.centroid().isclose((0.5, 0.5, 0.5))