File: test_708b_path_tools.py

package info (click to toggle)
ezdxf 1.4.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 104,528 kB
  • sloc: python: 182,341; makefile: 116; lisp: 20; ansic: 4
file content (798 lines) | stat: -rw-r--r-- 26,567 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
#  Copyright (c) 2020-2022, Manfred Moitzi
#  License: MIT License
import pytest
import math
from ezdxf.layouts import VirtualLayout
from ezdxf.math import Matrix44, OCS, Vec3, close_vectors
from ezdxf.path import (
    Path,
    bbox,
    precise_bbox,
    fit_paths_into_box,
    transform_paths,
    transform_paths_to_ocs,
    to_polylines3d,
    to_lines,
    to_lwpolylines,
    to_polylines2d,
    to_hatches,
    to_mpolygons,
    to_bsplines_and_vertices,
    to_splines_and_polylines,
    from_vertices,
    to_multi_path,
    single_paths,
    lines_to_curve3,
    lines_to_curve4,
    is_rectangular,
)
from ezdxf.path import make_path, Command
from ezdxf.entities import BoundaryPathType, EdgeType
from ezdxf.render import forms


class TestTransformPaths:
    def test_empty_paths(self):
        result = transform_paths([], Matrix44())
        assert len(result) == 0

    def test_start_point_only_paths(self):
        result = transform_paths([Path((1, 2, 3))], Matrix44())
        assert len(result) == 1
        assert len(result[0]) == 0
        assert result[0].start == (1, 2, 3)

    def test_transformation_is_executed(self):
        # Real transformation is just tested once, because Matrix44
        # transformation is tested in 605:
        result = transform_paths([Path((1, 2, 3))], Matrix44.translate(1, 1, 1))
        assert result[0].start == (2, 3, 4)

    def test_one_path_line_to(self):
        path = Path()
        path.line_to((1, 0))
        result = transform_paths([path], Matrix44())
        path0 = result[0]
        assert path0[0].type == Command.LINE_TO
        assert path0.start == (0, 0)
        assert path0.end == (1, 0)

    def test_one_path_curve3_to(self):
        path = Path()
        path.curve3_to((2, 0), (1, 1))
        result = transform_paths([path], Matrix44())
        path0 = result[0]
        assert path0[0].type == Command.CURVE3_TO
        assert len(path0[0]) == 2
        assert path0.start == (0, 0)
        assert path0.end == (2, 0)

    def test_one_path_curve4_to(self):
        path = Path()
        path.curve4_to((2, 0), (0, 1), (2, 1))
        result = transform_paths([path], Matrix44())
        path0 = result[0]
        assert path0[0].type == Command.CURVE4_TO
        assert len(path0[0]) == 3
        assert path0.start == (0, 0)
        assert path0.end == (2, 0)

    def test_one_path_multiple_command(self):
        path = Path()
        path.line_to((1, 0))
        path.curve3_to((2, 0), (2.5, 1))
        path.curve4_to((3, 0), (2, 1), (3, 1))
        result = transform_paths([path], Matrix44())

        path0 = result[0]
        assert path0[0].type == Command.LINE_TO
        assert path0[1].type == Command.CURVE3_TO
        assert path0[2].type == Command.CURVE4_TO
        assert path0.start == (0, 0)
        assert path0.end == (3, 0)

    def test_two_paths_one_command(self):
        path_a = Path()
        path_a.line_to((1, 0))
        path_b = Path((2, 0))
        path_b.line_to((3, 0))
        result = transform_paths([path_a, path_b], Matrix44())

        path0 = result[0]
        assert path0[0].type == Command.LINE_TO
        assert path0.start == (0, 0)
        assert path0.end == (1, 0)

        path1 = result[1]
        assert path1[0].type == Command.LINE_TO
        assert path1.start == (2, 0)
        assert path1.end == (3, 0)

    def test_two_paths_multiple_commands(self):
        path_a = Path()
        path_a.line_to((1, 0))
        path_a.curve3_to((2, 0), (2.5, 1))
        path_a.curve4_to((3, 0), (2, 1), (3, 1))

        path_b = path_a.transform(Matrix44.translate(4, 0, 0))
        result = transform_paths([path_a, path_b], Matrix44())

        path0 = result[0]
        assert path0[0].type == Command.LINE_TO
        assert path0[1].type == Command.CURVE3_TO
        assert path0[2].type == Command.CURVE4_TO
        assert path0.start == (0, 0)
        assert path0.end == (3, 0)

        path1 = result[1]
        assert path1[0].type == Command.LINE_TO
        assert path1[1].type == Command.CURVE3_TO
        assert path1[2].type == Command.CURVE4_TO
        assert path1.start == (4, 0)
        assert path1.end == (7, 0)

    def test_multi_path_objects(self):
        path = Path()
        path.line_to((1, 0, 0))
        path.move_to((2, 0, 0))
        paths = transform_paths([path], Matrix44.translate(0, 1, 0))
        assert len(paths) == 1
        path2 = paths[0]
        assert path2.start.isclose((0, 1, 0))
        assert len(path2) == 2
        assert path2.end.isclose((2, 1, 0))
        assert path2.has_sub_paths is True

    def test_to_ocs(self):
        p = Path((0, 1, 1))
        p.line_to((0, 1, 3))
        ocs = OCS((1, 0, 0))  # x-Axis
        result = list(transform_paths_to_ocs([p], ocs))
        p0 = result[0]
        assert ocs.from_wcs((0, 1, 1)) == p0.start
        assert ocs.from_wcs((0, 1, 3)) == p0[0].end


class TestPreciseBoundingBox:
    def test_empty_path(self):
        result = precise_bbox(Path())
        assert result.has_data is False

    def test_line_to(self):
        p = Path()
        p.line_to((1, 2, 3))
        result = precise_bbox(p)
        assert result.size == (1, 2, 3)

    def test_curve3_to(self):
        p = Path()
        p.curve3_to((2, 0), (1, 1))  # end, ctrl
        result = precise_bbox(p)
        assert result.extmax.y == pytest.approx(0.5)  # parabola

    def test_curve4_to(self):
        p = Path()
        p.curve4_to((2, 0), (0, 1), (2, 1))  # end, ctrl1, ctrl2
        result = precise_bbox(p)
        assert result.extmax.y == pytest.approx(0.75)

    def test_move_to(self):
        p = Path()
        p.line_to((1, 0, 0))
        p.move_to((1, 2, 3))
        p.line_to((1, 0, 0))
        result = precise_bbox(p)
        assert result.size == (1, 2, 3)


class TestBoundingBox:
    def test_empty_paths(self):
        result = bbox([])
        assert result.has_data is False

    def test_one_path(self):
        p = Path()
        p.line_to((1, 2, 3))
        assert bbox([p]).size == (1, 2, 3)

    def test_two_path(self):
        p1 = Path()
        p1.line_to((1, 2, 3))
        p2 = Path()
        p2.line_to((-3, -2, -1))
        assert bbox([p1, p2]).size == (4, 4, 4)

    @pytest.fixture(scope="class")
    def quadratic(self):
        p = Path()
        p.curve3_to((2, 0), (1, 1))
        return p

    def test_not_precise_box(self, quadratic):
        result = bbox([quadratic], fast=True)
        assert result.extmax.y == pytest.approx(1)  # control point

    def test_precise_box(self, quadratic):
        result = bbox([quadratic], fast=False)
        assert result.extmax.y == pytest.approx(0.5)  # parabola


class TestFitPathsIntoBoxUniformScaling:
    @pytest.fixture(scope="class")
    def spath(self):
        p = Path()
        p.line_to((1, 2, 3))
        return p

    def test_empty_paths(self):
        assert fit_paths_into_box([], (0, 0, 0)) == []

    def test_uniform_stretch_paths_limited_by_z(self, spath):
        result = fit_paths_into_box([spath], (6, 6, 6))
        box = bbox(result)
        assert box.size == (2, 4, 6)

    def test_uniform_stretch_paths_limited_by_y(self, spath):
        result = fit_paths_into_box([spath], (6, 3, 6))
        box = bbox(result)
        # stretch factor: 1.5
        assert box.size == (1.5, 3, 4.5)

    def test_uniform_stretch_paths_limited_by_x(self, spath):
        result = fit_paths_into_box([spath], (1.2, 6, 6))
        box = bbox(result)
        # stretch factor: 1.2
        assert box.size.isclose((1.2, 2.4, 3.6))

    def test_uniform_shrink_paths(self, spath):
        result = fit_paths_into_box([spath], (1.5, 1.5, 1.5))
        box = bbox(result)
        assert box.size.isclose((0.5, 1, 1.5))

    def test_project_into_xy(self, spath):
        result = fit_paths_into_box([spath], (6, 6, 0))
        box = bbox(result)
        # Note: z-axis is also ignored by extent detection:
        # scaling factor = 3x
        assert box.size.isclose((3, 6, 0)), "z-axis should be ignored"

    def test_project_into_xz(self, spath):
        result = fit_paths_into_box([spath], (6, 0, 6))
        box = bbox(result)
        assert box.size.isclose((2, 0, 6)), "y-axis should be ignored"

    def test_project_into_yz(self, spath):
        result = fit_paths_into_box([spath], (0, 6, 6))
        box = bbox(result)
        assert box.size.isclose((0, 4, 6)), "x-axis should be ignored"

    def test_invalid_target_size(self, spath):
        with pytest.raises(ValueError):
            fit_paths_into_box([spath], (0, 0, 0))


class TestFitPathsIntoBoxNonUniformScaling:
    @pytest.fixture(scope="class")
    def spath(self):
        p = Path()
        p.line_to((1, 2, 3))
        return p

    def test_non_uniform_stretch_paths(self, spath):
        result = fit_paths_into_box([spath], (8, 7, 6), uniform=False)
        box = bbox(result)
        assert box.size == (8, 7, 6)

    def test_non_uniform_shrink_paths(self, spath):
        result = fit_paths_into_box([spath], (1.5, 1.5, 1.5), uniform=False)
        box = bbox(result)
        assert box.size == (1.5, 1.5, 1.5)

    def test_project_into_xy(self, spath):
        result = fit_paths_into_box([spath], (6, 6, 0), uniform=False)
        box = bbox(result)
        assert box.size == (6, 6, 0), "z-axis should be ignored"

    def test_project_into_xz(self, spath):
        result = fit_paths_into_box([spath], (6, 0, 6), uniform=False)
        box = bbox(result)
        assert box.size == (6, 0, 6), "y-axis should be ignored"

    def test_project_into_yz(self, spath):
        result = fit_paths_into_box([spath], (0, 6, 6), uniform=False)
        box = bbox(result)
        assert box.size == (0, 6, 6), "x-axis should be ignored"


class TestPathToBsplineAndVertices:
    def test_empty_path(self):
        result = list(to_bsplines_and_vertices(Path()))
        assert result == []

    def test_only_vertices(self):
        p = from_vertices([(1, 0), (2, 0), (3, 1)])
        result = list(to_bsplines_and_vertices(p))
        assert len(result) == 1, "expected one list of vertices"
        assert len(result[0]) == 3, "expected 3 vertices"

    def test_one_quadratic_bezier(self):
        p = Path()
        p.curve3_to((4, 0), (2, 2))
        result = list(to_bsplines_and_vertices(p))
        assert len(result) == 1, "expected one B-spline"
        cpnts = result[0].control_points
        # A quadratic bezier should be converted to cubic bezier curve, which
        # has a precise cubic B-spline representation.
        assert len(cpnts) == 4, "expected 4 control vertices"
        assert cpnts[0] == (0, 0)
        assert cpnts[3] == (4, 0)

    def test_one_cubic_bezier(self):
        p = Path()
        p.curve4_to((4, 0), (1, 2), (3, 2))
        result = list(to_bsplines_and_vertices(p))
        assert len(result) == 1, "expected one B-spline"
        # cubic bezier curve maps 1:1 to cubic B-spline curve
        # see tests: 630b for the bezier_to_bspline() function

    def test_adjacent_cubic_beziers_with_G1_continuity(self):
        p = Path()
        p.curve4_to((4, 0), (1, 2), (3, 2))
        p.curve4_to((8, 0), (5, -2), (7, -2))
        result = list(to_bsplines_and_vertices(p))
        assert len(result) == 1, "expected one B-spline"
        # cubic bezier curve maps 1:1 to cubic B-spline curve
        # see tests: 630b for the bezier_to_bspline() function

    def test_adjacent_cubic_beziers_without_G1_continuity(self):
        p = Path()
        p.curve4_to((4, 0), (1, 2), (3, 2))
        p.curve4_to((8, 0), (5, 2), (7, 2))
        result = list(to_bsplines_and_vertices(p))
        assert len(result) == 2, "expected two B-splines"

    def test_multiple_segments(self):
        p = Path()
        p.curve4_to((4, 0), (1, 2), (3, 2))
        p.line_to((6, 0))
        p.curve3_to((8, 0), (7, 1))
        result = list(to_bsplines_and_vertices(p))
        assert len(result) == 3, "expected three segments"


class TestToEntityConverter:
    @pytest.fixture
    def path(self):
        p = Path()
        p.line_to((4, 0, 0))
        p.curve4_to((0, 0, 0), (3, 1, 1), (1, 1, 1))
        return p

    @pytest.fixture
    def path1(self):
        p = Path((0, 0, 1))
        p.curve4_to((4, 0, 1), (1, 1, 1), (3, 1, 1))
        return p

    def test_empty_to_polylines3d(self):
        assert list(to_polylines3d([])) == []

    def test_to_polylines3d(self, path):
        polylines = list(to_polylines3d(path))
        assert len(polylines) == 1
        p0 = polylines[0]
        assert p0.dxftype() == "POLYLINE"
        assert p0.is_3d_polyline is True
        assert len(p0) == 18
        assert p0.vertices[0].dxf.location == (0, 0, 0)
        assert p0.vertices[-1].dxf.location == (0, 0, 0)

    def test_empty_to_lines(self):
        assert list(to_lines([])) == []

    def test_to_lines(self, path):
        lines = list(to_lines(path))
        assert len(lines) == 17
        l0 = lines[0]
        assert l0.dxftype() == "LINE"
        assert l0.dxf.start == (0, 0, 0)
        assert l0.dxf.end == (4, 0, 0)

    def test_empty_to_lwpolyline(self):
        assert list(to_lwpolylines([])) == []

    def test_empty_path_to_lwpolyline(self):
        assert list(to_lwpolylines([Path()])) == []

    def test_to_lwpolylines(self, path):
        polylines = list(to_lwpolylines(path))
        assert len(polylines) == 1
        p0 = polylines[0]
        assert p0.dxftype() == "LWPOLYLINE"
        assert tuple(p0[0]) == (0, 0, 0, 0, 0)  # x, y, swidth, ewidth, bulge
        assert tuple(p0[-1]) == (0, 0, 0, 0, 0)

    def test_to_lwpolylines_with_wcs_elevation(self, path1):
        polylines = list(to_lwpolylines(path1))
        p0 = polylines[0]
        assert p0.dxf.elevation == 1

    def test_to_lwpolylines_with_ocs(self, path1):
        m = Matrix44.x_rotate(math.pi / 4)
        path = path1.transform(m)
        extrusion = m.transform((0, 0, 1))
        polylines = list(to_lwpolylines(path, extrusion=extrusion))
        p0 = polylines[0]
        assert p0.dxf.elevation == pytest.approx(1)
        assert p0.dxf.extrusion.isclose(extrusion)
        assert (
            all(
                math.isclose(a, b, abs_tol=1e-12)
                for a, b in zip(p0[0], (0, 0, 0, 0, 0))
            )
            is True
        )
        assert (
            all(
                math.isclose(a, b, abs_tol=1e-12)
                for a, b in zip(p0[-1], (4, 0, 0, 0, 0))
            )
            is True
        )

    def test_multi_path_to_lwpolylines(self):
        path = Path()
        path.line_to((1, 0, 0))
        path.move_to((2, 0, 0))
        path.line_to((3, 0, 0))
        polylines = list(to_lwpolylines(path))
        assert len(polylines) == 2
        assert len(polylines[0]) == 2
        assert len(polylines[1]) == 2

    def test_empty_to_polylines2d(self):
        assert list(to_polylines2d([])) == []

    def test_to_polylines2d(self, path):
        polylines = list(to_polylines2d(path))
        assert len(polylines) == 1
        p0 = polylines[0]
        assert p0.dxftype() == "POLYLINE"
        assert p0.is_2d_polyline is True
        assert p0[0].dxf.location == (0, 0, 0)
        assert p0[-1].dxf.location == (0, 0, 0)

    def test_to_polylines2d_with_wcs_elevation(self, path1):
        polylines = list(to_polylines2d(path1))
        p0 = polylines[0]
        assert p0.dxf.elevation == (0, 0, 1)

    def test_to_polylines2d_with_ocs(self, path1):
        m = Matrix44.x_rotate(math.pi / 4)
        path = path1.transform(m)
        extrusion = m.transform((0, 0, 1))
        polylines = list(to_polylines2d(path, extrusion=extrusion))
        p0 = polylines[0]
        assert p0.dxf.elevation.isclose((0, 0, 1))
        assert p0.dxf.extrusion.isclose(extrusion)
        assert p0[0].dxf.location.isclose((0, 0, 1))
        assert p0[-1].dxf.location.isclose((4, 0, 1))

    def test_empty_to_hatches(self):
        assert list(to_hatches([])) == []

    def test_to_poly_path_hatches(self, path):
        hatches = list(to_hatches(path, edge_path=False))
        assert len(hatches) == 1
        h0 = hatches[0]
        assert h0.dxftype() == "HATCH"
        assert len(h0.paths) == 1

    def test_to_poly_path_hatches_with_wcs_elevation(self, path1):
        hatches = list(to_hatches(path1, edge_path=False))
        ho = hatches[0]
        assert ho.dxf.elevation.isclose((0, 0, 1))

    def test_to_poly_path_hatches_with_ocs(self, path1):
        m = Matrix44.x_rotate(math.pi / 4)
        path = path1.transform(m)
        extrusion = m.transform((0, 0, 1))
        hatches = list(to_hatches(path, edge_path=False, extrusion=extrusion))
        h0 = hatches[0]
        assert h0.dxf.elevation.isclose((0, 0, 1))
        assert h0.dxf.extrusion.isclose(extrusion)
        polypath0 = h0.paths[0]
        assert (
            all(abs(a) < 1e-12 for a in polypath0.vertices[0])
            is True  # ~(0, 0, 0)
        )  # x, y, bulge
        assert (
            all(abs(a) < 1e-12 for a in polypath0.vertices[-1])
            is True  # ~(0, 0, 0)
        ), "should be closed automatically"

    def test_to_edge_path_hatches(self, path):
        hatches = list(to_hatches(path, edge_path=True))
        assert len(hatches) == 1
        h0 = hatches[0]
        assert h0.dxftype() == "HATCH"
        assert len(h0.paths) == 1
        edge_path = h0.paths[0]
        assert edge_path.type == BoundaryPathType.EDGE
        line, spline = edge_path.edges
        assert line.type == EdgeType.LINE
        assert line.start == (0, 0)
        assert line.end == (4, 0)
        assert spline.type == EdgeType.SPLINE
        assert close_vectors(
            Vec3.generate(spline.control_points),
            [(4, 0), (3, 1), (1, 1), (0, 0)],
        )

    def test_to_splines_and_polylines(self, path):
        entities = list(to_splines_and_polylines([path]))
        assert len(entities) == 2
        polyline = entities[0]
        spline = entities[1]
        assert polyline.dxftype() == "POLYLINE"
        assert spline.dxftype() == "SPLINE"
        assert polyline.vertices[0].dxf.location.isclose((0, 0))
        assert polyline.vertices[1].dxf.location.isclose((4, 0))
        assert close_vectors(
            Vec3.generate(spline.control_points),
            [(4, 0, 0), (3, 1, 1), (1, 1, 1), (0, 0, 0)],
        )

    def test_to_mpolygons_returns_expected_dxf_type(self, path):
        # Works internally like to_hatches() but with polyline paths
        # as boundaries only.
        polygons = list(
            to_mpolygons(
                path,
                dxfattribs={
                    "color": 6,  # boundary line color
                    "fill_color": 1,
                },
            )
        )
        assert len(polygons) == 1
        mp = polygons[0]
        assert mp.dxftype() == "MPOLYGON"
        assert len(mp.paths) == 1
        assert mp.dxf.color == 6
        assert mp.dxf.fill_color == 1


# Issue #224 regression test
@pytest.fixture
def ellipse():
    layout = VirtualLayout()
    return layout.add_ellipse(
        center=(1999.488177113287, -1598.02265357955, 0.0),
        major_axis=(629.968069297, 0.0, 0.0),
        ratio=0.495263197,
        start_param=-1.261396328799999,
        end_param=-0.2505454928,
        dxfattribs={
            "layer": "0",
            "linetype": "Continuous",
            "color": 3,
            "extrusion": (0.0, 0.0, -1.0),
        },
    )


def test_to_multi_path():
    p0 = Path((1, 0, 0))
    p0.line_to((2, 0, 0))
    p0.move_to((3, 0, 0))  # will be replaced by move_to(4, 0, 0)
    p1 = Path((4, 0, 0))
    p1.line_to((5, 0, 0))
    p1.move_to((6, 0, 0))
    path = to_multi_path([p0, p1])
    assert path.has_sub_paths is True
    assert path.start == (1, 0, 0)
    assert path.end == (6, 0, 0)
    assert path[1].type == Command.MOVE_TO
    assert path[1].end == (4, 0, 0)


def test_to_multi_path_ignores_empty_paths():
    p0 = Path((1, 0, 0))
    p0.line_to((2, 0, 0))
    empty = Path((100, 0, 0))
    path = to_multi_path([p0, empty])
    assert len(path) == 1
    assert path.has_sub_paths is False
    assert path.end.isclose((2, 0, 0))


def test_single_paths_from_a_single_path_object():
    p = Path((1, 0, 0))
    assert len(list(single_paths([p]))) == 1


def test_single_paths_from_a_multi_path_object():
    p = Path((1, 0, 0))
    p.line_to((2, 0, 0))  # 1st sub-path
    p.move_to((3, 0, 0))  # 2nd sub-path
    p.line_to((4, 0, 0))
    p.move_to((5, 0, 0))  # 3rd sub-path
    paths = list(single_paths([p]))
    assert len(paths) == 3


def test_issue_224_end_points(ellipse):
    p = make_path(ellipse)

    assert ellipse.start_point.isclose(p.start)
    assert ellipse.end_point.isclose(p.end)

    # end point locations measured in BricsCAD:
    assert ellipse.start_point.isclose((2191.3054, -1300.8375), abs_tol=1e-4)
    assert ellipse.end_point.isclose((2609.7870, -1520.6677), abs_tol=1e-4)


def test_issue_494_make_path_from_spline_defined_by_fit_points_and_tangents():
    from ezdxf.entities import Spline

    spline = Spline.new(
        dxfattribs={
            "degree": 3,
            "start_tangent": (0.9920663924871818, 0.1257150464243202, 0.0),
            "end_tangent": (0.9999448476387669, -0.0105024606965807, 0.0),
        },
    )
    spline.fit_points = [
        (209.5080107190219, 206.963463282597, 0.0),
        (209.55254921431026, 206.96662062623636, 0.0),
    ]
    p = make_path(spline)
    assert len(p) > 0


class TestAllLinesToCurveConverter:
    def test_create_a_curve3_command(self):
        path = Path()
        path.line_to((1, 0))
        path = lines_to_curve3(path)
        assert path[0].type == Command.CURVE3_TO

    def test_create_a_curve4_command(self):
        path = Path()
        path.line_to((1, 0))
        path = lines_to_curve4(path)
        assert path[0].type == Command.CURVE4_TO

    @pytest.mark.parametrize(
        "func",
        [
            lines_to_curve3,
            lines_to_curve4,
        ],
    )
    def test_line_to_curve_creates_a_linear_segment(self, func):
        v1, v2 = 1, 2
        path = Path(start=(v1, v1, v1))
        path.line_to((v2, v2, v2))
        path = func(path)
        vertices = list(path.flattening(1))
        assert len(vertices) > 2
        assert all(
            [
                math.isclose(v.x, v.y) and math.isclose(v.x, v.z)
                for v in vertices
            ]
        ), "all vertices have to be located along a line (x == y == z)"

    def test_remove_line_segments_of_zero_length_at_the_start(self):
        # CURVE3_TO and CURVE4_TO can not process zero length segments
        path = Path()
        path.line_to((0, 0))  # line segment of length==0 should be removed
        path.line_to((1, 0))
        path = lines_to_curve4(path)
        assert len(path) == 1
        assert path.start == (0, 0)
        assert path[0].type == Command.CURVE4_TO
        assert path[0].end == (1, 0)

    def test_remove_line_segments_of_zero_length_between_commands(self):
        # CURVE3_TO and CURVE4_TO can not process zero length segments
        path = Path()
        path.line_to((1, 0))
        path.line_to((1, 0))  # line segment of length==0 should be removed
        path.line_to((2, 0))
        path = lines_to_curve4(path)
        assert len(path) == 2
        assert path.start == (0, 0)
        assert path[0].type == Command.CURVE4_TO
        assert path[0].end == (1, 0)
        assert path[1].type == Command.CURVE4_TO
        assert path[1].end == (2, 0)

    def test_remove_line_segments_of_zero_length_at_the_end(self):
        # CURVE3_TO and CURVE4_TO can not process zero length segments
        path = Path()
        path.line_to((1, 0))
        path.line_to((1, 0))  # line segment of length==0 should be removed
        path = lines_to_curve4(path)
        assert len(path) == 1
        assert path.start == (0, 0)
        assert path[0].type == Command.CURVE4_TO
        assert path[0].end == (1, 0)

    def test_does_not_remove_a_line_representing_a_single_point(self):
        path = Path((1, 0))
        path.line_to((1, 0))  # represents the point (1, 0)
        path = lines_to_curve4(path)
        assert len(path) == 1
        assert path[0].type == Command.LINE_TO

    @pytest.mark.parametrize(
        "start,delta",
        [
            (0, 1e-11),  # uses absolute tolerance of 1e-12 near zero!
            (10, 1e-8),  # uses relative tolerance of 1e-9 away from zero!
        ],
    )
    def test_for_very_short_line_segments(self, start, delta):
        path = Path((start, 0, 0))
        path.line_to((start + delta, 0, 0))
        path = lines_to_curve4(path)
        assert len(path) == 1
        assert path[0].type == Command.CURVE4_TO
        assert len(list(path.flattening(1))) > 3

    @pytest.mark.parametrize(
        "start,delta",
        [
            (0, 1e-12),  # uses absolute tolerance of 1e-12 near zero!
            (10, 1e-9),  # uses relative tolerance of 1e-9 away from zero!
        ],
    )
    def test_which_length_is_too_short_to_create_a_curve(self, start, delta):
        path = Path((start, 0, 0))
        path.line_to((start + delta, 0, 0))
        path = lines_to_curve4(path)
        assert len(path) == 1
        assert (
            path[0].type == Command.LINE_TO
        ), "should not remove a single line segment representing a point"
        assert len(list(path.flattening(1))) == 2


class TestIsRectangular:
    def test_empty_path(self):
        assert is_rectangular(Path()) is False

    def test_less_than_four_corners(self):
        p = from_vertices([(0, 0), (1, 0), (1, 1)])
        assert is_rectangular(p) is False

    def test_open_square(self):
        p = from_vertices([(0, 0), (1, 0), (1, 1), (0, 1)])
        assert is_rectangular(p) is True

    def test_closed_square(self):
        p = from_vertices([(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)])
        assert is_rectangular(p) is True

    def test_rectangle(self):
        p = from_vertices([(0, 0), (2, 0), (2, 1), (0, 1)])
        assert is_rectangular(p) is True

    def test_parallelogram(self):
        p = from_vertices([(0, 0), (2, 0), (3, 1), (1, 1)])
        assert is_rectangular(p) is False

    def test_non_aligned_square(self):
        p = from_vertices(forms.rotate(forms.square(2), 30))
        assert is_rectangular(p, aligned=False) is True


def test_polyline_with_bulge_value_greater_one():
    msp = VirtualLayout()
    pline = msp.add_lwpolyline([(0, 0, 0, 0, 2), (1, 0)])
    p = make_path(pline, segments=12)

    assert len(p) == 4