1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
|
# Copyright (c) 2022, Manfred Moitzi
# License: MIT License
import random
import pytest
from ezdxf.addons import genetic_algorithm as ga
from ezdxf.addons import binpacking as bp
class TestFloatDNAZeroOne:
def test_init_value(self):
dna = ga.FloatDNA([1.0] * 20)
assert all(v == 1.0 for v in dna) is True
@pytest.mark.parametrize("value", [-0.1, 1.1])
def test_init_value_is_valid(self, value):
with pytest.raises(ValueError):
ga.FloatDNA([value] * 20)
def test_flip_mutate_at(self):
dna = ga.FloatDNA([0, 0.1, 0.2, 0.3, 0.4])
for index in range(5):
dna.flip_mutate_at(index)
assert list(dna) == pytest.approx([1.0, 0.9, 0.8, 0.7, 0.6])
def test_iter(self):
dna = ga.FloatDNA([1.0] * 20)
assert len(list(dna)) == 20
def test_reset_data(self):
dna = ga.FloatDNA([0.0] * 20)
dna.reset([0.5] * 20)
assert len(dna) == 20
assert dna[7] == 0.5
@pytest.mark.parametrize(
"values",
[
[0, 0, -1],
[2, 2, 2, 2, 2],
],
)
def test_reset_data_checks_validity(self, values):
dna = ga.FloatDNA([])
with pytest.raises(ValueError):
dna.reset(values)
def test_new_random_dna(self):
dna = ga.FloatDNA.random(20)
assert len(dna) == 20
assert len(set(dna)) > 10
def test_subscription_setter(self):
dna = ga.FloatDNA([0.0] * 20)
dna[-3:] = [0.1, 0.2, 0.3]
assert len(dna) == 20
assert dna[-3:] == pytest.approx([0.1, 0.2, 0.3])
assert sum(dna) == pytest.approx(0.6)
class TestBitDNA:
def test_init_value(self):
dna = ga.BitDNA([1] * 20)
assert all(v is True for v in dna) is True
def test_reset_data(self):
dna = ga.BitDNA([1] * 20)
dna.reset([False] * 20)
assert len(dna) == 20
assert dna[7] is False
def test_new_random_dna(self):
dna = ga.BitDNA.random(20)
assert len(dna) == 20
assert len(set(dna)) == 2
def test_subscription_setter(self):
dna = ga.BitDNA([1] * 20)
dna[-3:] = [False, False, False]
assert len(dna) == 20
assert dna[-4:] == [True, False, False, False]
class TestUniqueIntDNA:
def test_init_value(self):
dna = ga.UniqueIntDNA(10)
assert dna.is_valid is True
assert list(dna) == list(range(10))
def test_init_values(self):
dna = ga.UniqueIntDNA([0, 1, 2, 3])
assert dna.is_valid is True
assert list(dna) == [0, 1, 2, 3]
def test_init_invalid_values(self):
with pytest.raises(TypeError):
ga.UniqueIntDNA([0, 1, 2, 2])
def test_reset_data(self):
dna = ga.UniqueIntDNA(10)
dna.reset(range(9, -1, -1))
assert len(dna) == 10
assert dna.is_valid is True
assert dna[0] == 9
assert dna[9] == 0
def test_new_random_dna(self):
dna = ga.UniqueIntDNA.random(10)
assert len(dna) == 10
assert dna.is_valid is True
def test_subscription_setter(self):
dna = ga.UniqueIntDNA(10)
dna[-3:] = [1, 2, 3]
assert len(dna) == 10
assert dna[-4:] == [6, 1, 2, 3]
assert dna.is_valid is False
def test_recombine_dna_ocx1_preserves_order(self):
dna1 = ga.UniqueIntDNA(10) # 0, 1, 2, 3, ...
dna2 = ga.UniqueIntDNA(10)
dna2._data.reverse() # 9, 8, 7, 6, ...
ga.recombine_dna_ocx1(dna1, dna2, 0, 3)
assert list(dna1) == [9, 8, 7, 0, 1, 2, 3, 4, 5, 6]
assert list(dna2) == [0, 1, 2, 9, 8, 7, 6, 5, 4, 3]
@pytest.mark.parametrize("i1, i2", [(0, 3), (3, 7), (7, 9), (0, 9)])
def test_random_recombine_dna_ocx1(self, i1, i2):
dna1 = ga.UniqueIntDNA.random(10)
dna2 = ga.UniqueIntDNA.random(10)
copy1 = dna1.copy()
copy2 = dna2.copy()
ga.recombine_dna_ocx1(dna1, dna2, i1, i2)
assert dna1.is_valid is True
assert dna2.is_valid is True
assert copy1 != dna1
assert copy2 != dna2
@pytest.mark.parametrize("i1, i2", [(0, 0), (8, 8), (9, 9), (10, 11)])
def test_recombine_dna_ocx1_without_change(self, i1, i2):
dna1 = ga.UniqueIntDNA.random(10)
dna2 = ga.UniqueIntDNA.random(10)
copy1 = dna1.copy()
copy2 = dna2.copy()
ga.recombine_dna_ocx1(dna1, dna2, i1, i2)
assert copy1 == dna1
assert copy2 == dna2
class TestIntegerDNA:
def test_init_value(self):
dna = ga.IntegerDNA([0, 1, 2, 3, 4], 5)
assert dna.is_valid is True
assert max(dna) < 5
def test_init_invalid_data(self):
with pytest.raises(TypeError):
ga.IntegerDNA([0, 1, 2, 3, 5], 5)
def test_flip_mutate_at(self):
dna = ga.IntegerDNA([0, 1, 2, 3, 4], 5)
for index in range(5):
dna.flip_mutate_at(index)
assert list(dna) == [4, 3, 2, 1, 0]
def test_reset_data(self):
dna = ga.IntegerDNA([0, 1, 2, 3, 4, 0, 1, 2, 3, 4], 5)
dna.reset([4, 3, 2, 1, 0, 1, 2, 3, 2, 1])
assert len(dna) == 10
assert dna.is_valid is True
assert dna[0] == 4
assert dna[9] == 1
def test_new_random_dna(self):
dna = ga.IntegerDNA.random(10, 5)
assert len(dna) == 10
assert dna.is_valid is True
class TestHallOfFame:
@pytest.fixture
def candidates(self):
s = []
for fitness in range(1, 10):
dna = ga.BitDNA.random(5)
dna.fitness = 0.1 * fitness
s.append(dna)
return s
def test_build(self, candidates):
hof = ga.HallOfFame(3)
for dna in candidates:
hof.add(dna)
assert [dna.fitness for dna in hof] == pytest.approx([0.9, 0.8, 0.7])
def test_get_n_best(self, candidates):
hof = ga.HallOfFame(3)
for dna in candidates:
hof.add(dna)
result = hof.get(2)
assert result[0].fitness == pytest.approx(0.9)
assert result[1].fitness == pytest.approx(0.8)
def test_get_n_best_negative_values(self, candidates):
for dna in candidates:
dna.fitness = -dna.fitness
hof = ga.HallOfFame(3)
for dna in candidates:
hof.add(dna)
result = hof.get(2)
assert result[0].fitness == pytest.approx(-0.1)
assert result[1].fitness == pytest.approx(-0.2)
def test_purge(self, candidates):
hof = ga.HallOfFame(3)
for dna in candidates:
hof.add(dna)
hof.purge()
assert len(hof._unique_entries) == 3
def test_reverse_mutate():
dna = ga.UniqueIntDNA(10)
mutate = ga.ReverseMutate(3)
mutate.mutate(dna, 1.0)
assert list(dna) != list(ga.UniqueIntDNA(10))
assert len(set(dna)) == 10
def test_scramble_mutate():
dna = ga.UniqueIntDNA(10)
mutate = ga.ScrambleMutate(5)
mutate.mutate(dna, 1.0)
assert list(dna) != list(ga.UniqueIntDNA(10))
assert len(set(dna)) == 10
def test_tournament_selection():
candidates = [ga.UniqueIntDNA(10) for _ in range(10)]
for index, dna in enumerate(candidates):
dna.fitness = index
selection = ga.TournamentSelection(2)
selection.reset(candidates)
result = list(selection.pick(2))
assert len(result) == 2
result = list(selection.pick(3))
assert len(result) == 3
class TestRouletteSelection:
SELECTOR = ga.RouletteSelection
@pytest.mark.parametrize("low, high", [
(1, 10000),
(-10000, -1),
])
def test_weights(self, low, high):
dna_max, dna_min = ga.BitDNA.n_random(2, 10)
dna_max.fitness = high
dna_min.fitness = low
selector = self.SELECTOR(negative_values=high < 0)
selector.reset([dna_max, dna_min])
random.seed(42)
count = 0
for _ in range(4):
# first runs may fail in test mode, only testing issue?
# in real world application the relation dna_max:dna_min is always 20:0
values = list(selector.pick(20))
# in debug mode this assertion is ALWAYS True (count==4)
if values.count(dna_max) > values.count(dna_min):
count += 1
assert count > 1
class TestRankBasedSelection(TestRouletteSelection):
SELECTOR = ga.RankBasedSelection
def test_two_point_crossover():
dna1 = ga.BitDNA([False] * 20)
dna2 = ga.BitDNA([True] * 20)
ga.recombine_dna_2pcx(dna1, dna2, 7, 11)
assert list(dna1[0:7]) == [False] * 7
assert list(dna1[7:11]) == [True] * 4
assert list(dna1[11:]) == [False] * 9
assert list(dna2[0:7]) == [True] * 7
assert list(dna2[7:11]) == [False] * 4
assert list(dna2[11:]) == [True] * 9
class TestThresholdFilter:
@pytest.fixture
def candidates(self):
return [ga.BitDNA([]) for _ in range(100)]
def test_positive_values(self, candidates):
for fitness, c in enumerate(candidates):
c.fitness = fitness
candidates = list(ga.threshold_filter(candidates, 99, 0.1))
assert len(candidates) == 90
def test_negative_values(self, candidates):
for fitness, c in enumerate(candidates):
c.fitness = -fitness
candidates = list(ga.threshold_filter(candidates, 0.0, 0.1))
assert len(candidates) == 90
SMALL_ENVELOPE = ("small-envelope", 11.5, 6.125, 0.25, 10)
LARGE_ENVELOPE = ("large-envelope", 15.0, 12.0, 0.75, 15)
SMALL_BOX = ("small-box", 8.625, 5.375, 1.625, 70.0)
MEDIUM_BOX = ("medium-box", 11.0, 8.5, 5.5, 70.0)
MEDIUM_BOX2 = ("medium-box-2", 13.625, 11.875, 3.375, 70.0)
LARGE_BOX = ("large-box", 12.0, 12.0, 5.5, 70.0)
LARGE_BOX2 = ("large-box-2", 23.6875, 11.75, 3.0, 70.0)
ALL_BINS = [
SMALL_ENVELOPE,
LARGE_ENVELOPE,
SMALL_BOX,
MEDIUM_BOX,
MEDIUM_BOX2,
LARGE_BOX,
LARGE_BOX2,
]
@pytest.fixture
def packer():
packer = bp.Packer()
packer.add_item("50g [powder 1]", 3.9370, 1.9685, 1.9685, 1)
packer.add_item("50g [powder 2]", 3.9370, 1.9685, 1.9685, 2)
packer.add_item("50g [powder 3]", 3.9370, 1.9685, 1.9685, 3)
packer.add_item("250g [powder 4]", 7.8740, 3.9370, 1.9685, 4)
packer.add_item("250g [powder 5]", 7.8740, 3.9370, 1.9685, 5)
packer.add_item("250g [powder 6]", 7.8740, 3.9370, 1.9685, 6)
packer.add_item("250g [powder 7]", 7.8740, 3.9370, 1.9685, 7)
packer.add_item("250g [powder 8]", 7.8740, 3.9370, 1.9685, 8)
packer.add_item("250g [powder 9]", 7.8740, 3.9370, 1.9685, 9)
return packer
def pack(packer, box, pick):
packer.add_bin(*box)
packer.pack(pick)
return packer.bins[0]
class DummyEvaluator(ga.Evaluator):
def __init__(self, packer: bp.AbstractPacker):
self.packer = packer
def evaluate(self, dna: ga.DNA) -> float:
return 0.5
def run_packer(self, dna: ga.DNA):
packer = self.packer.copy()
packer.pack()
return packer
class TestGeneticOptimizer:
def test_init(self, packer):
driver = ga.GeneticOptimizer(packer, 100)
assert driver.is_executed is False
def test_init_invalid_max_runs(self, packer):
with pytest.raises(ValueError):
ga.GeneticOptimizer(packer, 0)
def test_can_only_run_once(self, packer):
evaluator = DummyEvaluator(packer)
optimizer = ga.GeneticOptimizer(evaluator, 100)
optimizer.execute()
assert optimizer.is_executed is True
with pytest.raises(TypeError):
optimizer.execute()
def test_execution(self, packer):
packer.add_bin(*MEDIUM_BOX)
evaluator = DummyEvaluator(packer)
optimizer = ga.GeneticOptimizer(evaluator, 10)
optimizer.add_candidates(ga.BitDNA.n_random(20, len(packer.items)))
optimizer.execute()
assert optimizer.generation == 10
assert optimizer.best_fitness > 0.1
# Get best packer of SubSetEvaluator:
best_packer = evaluator.run_packer(optimizer.best_dna)
assert len(best_packer.bins[0].items) > 1
if __name__ == "__main__":
pytest.main([__file__])
|