1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
|
/*
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
**
** Any non-GPL usage of this software or parts of this software is strictly
** forbidden.
**
** The "appropriate copyright message" mentioned in section 2c of the GPLv2
** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com"
**
** Commercial non-GPL licensing of this software is possible.
** For more info contact Nero AG through Mpeg4AAClicense@nero.com.
**
** $Id: pns.c,v 1.39 2010/06/04 20:47:56 menno Exp $
**/
#include "common.h"
#include "structs.h"
#include "pns.h"
/* static function declarations */
static void gen_rand_vector(real_t *spec, int16_t scale_factor, uint16_t size,
uint8_t sub,
/* RNG states */ uint32_t *__r1, uint32_t *__r2);
#ifdef FIXED_POINT
static real_t const pow2_table[] =
{
COEF_CONST(1.0),
COEF_CONST(1.18920711500272),
COEF_CONST(1.41421356237310),
COEF_CONST(1.68179283050743)
};
// mean_energy_table[x] == sqrt(3 / x)
static real_t const mean_energy_table[] =
{
COEF_CONST(0.0), // should not happen
COEF_CONST(1.7320508075688772),
COEF_CONST(1.224744871391589),
COEF_CONST(1.0), // sqrt(3/3)
COEF_CONST(0.8660254037844386),
COEF_CONST(0.7745966692414834),
COEF_CONST(0.7071067811865476),
COEF_CONST(0.6546536707079771),
COEF_CONST(0.6123724356957945),
COEF_CONST(0.5773502691896257),
COEF_CONST(0.5477225575051661),
COEF_CONST(0.5222329678670935),
COEF_CONST(0.5), // sqrt(3/12)
COEF_CONST(0.4803844614152614),
COEF_CONST(0.4629100498862757),
COEF_CONST(0.4472135954999579),
};
#endif
/* The function gen_rand_vector(addr, size) generates a vector of length
<size> with signed random values of average energy MEAN_NRG per random
value. A suitable random number generator can be realized using one
multiplication/accumulation per random value.
*/
static INLINE void gen_rand_vector(real_t *spec, int16_t scale_factor, uint16_t size,
uint8_t sub,
/* RNG states */ uint32_t *__r1, uint32_t *__r2)
{
#ifndef FIXED_POINT
uint16_t i;
real_t energy = 0.0;
(void)sub;
scale_factor = min(max(scale_factor, -120), 120);
for (i = 0; i < size; i++)
{
real_t tmp = (real_t)(int32_t)ne_rng(__r1, __r2);
spec[i] = tmp;
energy += tmp*tmp;
}
if (energy > 0)
{
real_t scale = (real_t)1.0/(real_t)sqrt(energy);
scale *= (real_t)pow(2.0, 0.25 * scale_factor);
for (i = 0; i < size; i++)
{
spec[i] *= scale;
}
}
#else
uint16_t i;
real_t scale;
int32_t exp, frac;
int32_t idx, mask;
/* IMDCT pre-scaling */
scale_factor -= 4 * sub;
// 52 stands for 2**13 == 8192 factor; larger factor causes overflows later (in cfft).
scale_factor = min(max(scale_factor, -(REAL_BITS * 4)), 52);
exp = scale_factor >> 2;
frac = scale_factor & 3;
/* 29 <= REAL_BITS + exp <= 0 */
mask = (1 << (REAL_BITS + exp)) - 1;
idx = size;
scale = COEF_CONST(1);
// At most 2 iterations.
while (idx >= 16)
{
idx >>= 2;
scale >>= 1;
}
scale = MUL_C(scale, mean_energy_table[idx]);
if (frac)
scale = MUL_C(scale, pow2_table[frac]);
// scale is less than 4.0 now.
for (i = 0; i < size; i++)
{
real_t tmp = (int32_t)ne_rng(__r1, __r2);
if (tmp < 0)
tmp = -(tmp & mask);
else
tmp = (tmp & mask);
spec[i] = MUL_C(tmp, scale);
}
#endif
}
void pns_decode(ic_stream *ics_left, ic_stream *ics_right,
real_t *spec_left, real_t *spec_right, uint16_t frame_len,
uint8_t channel_pair, uint8_t object_type,
/* RNG states */ uint32_t *__r1, uint32_t *__r2)
{
uint8_t g, sfb, b;
uint16_t begin, end;
uint8_t group = 0;
uint16_t nshort = frame_len >> 3;
uint8_t sub = 0;
#ifdef FIXED_POINT
/* IMDCT scaling */
if (object_type == LD)
{
sub = 9 /*9*/;
} else {
if (ics_left->window_sequence == EIGHT_SHORT_SEQUENCE)
sub = 7 /*7*/;
else
sub = 10 /*10*/;
}
#else
(void)object_type;
#endif
for (g = 0; g < ics_left->num_window_groups; g++)
{
/* Do perceptual noise substitution decoding */
for (b = 0; b < ics_left->window_group_length[g]; b++)
{
uint16_t base = group * nshort;
for (sfb = 0; sfb < ics_left->max_sfb; sfb++)
{
uint32_t r1_dep = 0, r2_dep = 0;
if (is_noise(ics_left, g, sfb))
{
#ifdef LTP_DEC
/* Simultaneous use of LTP and PNS is not prevented in the
syntax. If both LTP, and PNS are enabled on the same
scalefactor band, PNS takes precedence, and no prediction
is applied to this band.
*/
ics_left->ltp.long_used[sfb] = 0;
ics_left->ltp2.long_used[sfb] = 0;
#endif
#ifdef MAIN_DEC
/* For scalefactor bands coded using PNS the corresponding
predictors are switched to "off".
*/
ics_left->pred.prediction_used[sfb] = 0;
#endif
begin = min(base + ics_left->swb_offset[sfb], ics_left->swb_offset_max);
end = min(base + ics_left->swb_offset[sfb+1], ics_left->swb_offset_max);
r1_dep = *__r1;
r2_dep = *__r2;
/* Generate random vector */
gen_rand_vector(&spec_left[begin],
ics_left->scale_factors[g][sfb], end - begin, sub, __r1, __r2);
}
/* From the spec:
If the same scalefactor band and group is coded by perceptual noise
substitution in both channels of a channel pair, the correlation of
the noise signal can be controlled by means of the ms_used field: While
the default noise generation process works independently for each channel
(separate generation of random vectors), the same random vector is used
for both channels if ms_used[] is set for a particular scalefactor band
and group. In this case, no M/S stereo coding is carried out (because M/S
stereo coding and noise substitution coding are mutually exclusive).
If the same scalefactor band and group is coded by perceptual noise
substitution in only one channel of a channel pair the setting of ms_used[]
is not evaluated.
*/
if ((ics_right != NULL)
&& is_noise(ics_right, g, sfb))
{
#ifdef LTP_DEC
/* See comment above. */
ics_right->ltp.long_used[sfb] = 0;
ics_right->ltp2.long_used[sfb] = 0;
#endif
#ifdef MAIN_DEC
/* See comment above. */
ics_right->pred.prediction_used[sfb] = 0;
#endif
if (channel_pair && is_noise(ics_left, g, sfb) &&
(((ics_left->ms_mask_present == 1) &&
(ics_left->ms_used[g][sfb])) ||
(ics_left->ms_mask_present == 2)))
{
/*uint16_t c;*/
begin = min(base + ics_right->swb_offset[sfb], ics_right->swb_offset_max);
end = min(base + ics_right->swb_offset[sfb+1], ics_right->swb_offset_max);
/* Generate random vector dependent on left channel*/
gen_rand_vector(&spec_right[begin],
ics_right->scale_factors[g][sfb], end - begin, sub, &r1_dep, &r2_dep);
} else /*if (ics_left->ms_mask_present == 0)*/ {
begin = min(base + ics_right->swb_offset[sfb], ics_right->swb_offset_max);
end = min(base + ics_right->swb_offset[sfb+1], ics_right->swb_offset_max);
/* Generate random vector */
gen_rand_vector(&spec_right[begin],
ics_right->scale_factors[g][sfb], end - begin, sub, __r1, __r2);
}
}
} /* sfb */
group++;
} /* b */
} /* g */
}
|