1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
|
(***********************************************************************)
(* *)
(* FaCiLe *)
(* A Functional Constraint Library *)
(* *)
(* Nicolas Barnier, Pascal Brisset, LOG, CENA *)
(* *)
(* Copyright 2004 CENA. All rights reserved. This file is distributed *)
(* under the terms of the GNU Lesser General Public License. *)
(***********************************************************************)
open Fcl_misc.Operators
open Fcl_var
(* operators *)
type agg_op = Pluse | Multe
type bin_op = Dive | Mode
type un_op = Abse
(* genuine or symbolic auxilliary variable *)
type var = Var of Fd.t | Aux of int
(* compiled expressions *)
(* they are normalized by sorting unordered subexpressions according
to compare_expr and compare_intexpr *)
(* beware: convention for sums is Sigma (coef_i * exp_i) + cst
whereas Fcl_linear functions and constraints assume that the constant
is at the rhs : Sigma (coef_i * exp_i) = cst *)
type t =
(* sum : op * (coef * exp) list * cst *)
(* prod : op * (exposant * exp) list * cst *)
Agg of agg_op * (int * t) list * int
| Bin of bin_op * t * t
| Un of un_op * t
| Inte of int
| Fde of var
(* unused
let rec iter_last f last = function
[] -> ()
| [x] -> last x
| x :: xs -> begin f x; iter_last f last xs end
*)
let fprint_var c = function
Var v -> Fd.fprint c v | Aux id -> Printf.fprintf c "vaux_%d" id
type priority = PrioTop | PrioPlus | PrioMul | PrioExp
let rec fprint prio c e =
let left p = if p < prio then Printf.fprintf c "("
and right p = if p < prio then Printf.fprintf c ")" in
match e with
Agg (Pluse, es, ct) -> begin
left PrioPlus;
let print (coef, e) =
match coef with
1 -> Printf.fprintf c "%a" (fprint PrioPlus) e
| -1 -> Printf.fprintf c "-%a" (fprint PrioMul) e
| _ -> Printf.fprintf c "%d*%a" coef (fprint PrioMul) e in
begin
match es with
[] -> assert false
| e::es ->
print e;
List.iter (fun e -> Printf.fprintf c " + "; print e) es
end;
if ct <> 0 then Printf.fprintf c " + %d" ct;
right PrioPlus end
| Agg (Multe, es, ct) -> begin
left PrioMul;
let print (coef, e) =
if coef <> 1 then Printf.fprintf c "%a ^ %d" (fprint PrioExp) e coef
else Printf.fprintf c "%a" (fprint PrioMul) e in
begin
match es with
[] -> assert false
| e::es ->
print e;
List.iter (fun e -> Printf.fprintf c " * "; print e) es
end;
if ct <> 1 then Printf.fprintf c " * %d" ct;
right PrioMul end
| Bin (op, e1, e2) ->
let op = match op with Dive -> "/" | Mode -> "%" in
left PrioMul;
Printf.fprintf c "%a %s %a" (fprint PrioExp) e1 op (fprint PrioExp) e2;
right PrioMul
| Un (Abse, e) -> Printf.fprintf c "|%a|" (fprint PrioTop) e
| Inte i -> Printf.fprintf c "%d" i
| Fde v -> fprint_var c v
let fprint = fprint PrioTop
let rec min_max_of_expr = function
Inte x -> (x, x)
| Fde x -> begin
match x with
Var v -> Fd.min_max v
| _ -> Fcl_debug.fatal_error "Expr.min_max_of_expr: symbolic variable" end
| Bin (typ, x1, x2) -> begin
let (a, b) = min_max_of_expr x1 and (c, d) = min_max_of_expr x2 in
match typ with
Dive -> Fcl_nonlinear.min_max_div_inter a b c d
| Mode -> Fcl_nonlinear.min_max_mod_inter a b c d end
| Un (Abse, x) ->
let (a, b) = min_max_of_expr x in
Fcl_nonlinear.min_max_abs_inter a b
| Agg (Pluse, es, c) ->
let (a, b) =
List.fold_left
(fun (acca, accb) (coef, e) ->
let (a, b) = min_max_of_expr e in
let (coefa, coefb) = Fcl_nonlinear.min_max_mult_inter a b coef coef in
Fcl_linear.min_max_plus_inter coefa coefb acca accb)
(0, 0) es in
Fcl_linear.min_max_plus_inter c c a b
| Agg (Multe, es, c) ->
let (a, b) =
List.fold_left
(fun (acca, accb) (n, e) ->
let (a, b) = min_max_of_expr e in
let (coefa, coefb) = Fcl_nonlinear.min_max_expn_inter a b n in
Fcl_nonlinear.min_max_mult_inter coefa coefb acca accb)
(1, 1) es in
Fcl_nonlinear.min_max_mult_inter a b c c
let min_of_expr e = let (a, _) = min_max_of_expr e in a
let max_of_expr e = let (_, b) = min_max_of_expr e in b
let rec eval = function
Inte x -> x
| Fde x -> begin
match x with
Var v -> begin
match Fd.value v with
Unk _ ->
let msg = Printf.sprintf "Expr.eval: variable %s unknown" (Fd.name v) in
Fcl_debug.fatal_error msg
| Val i -> i end
| _ -> Fcl_debug.fatal_error "Expr.eval: symbolic variable" end
| Bin (typ, x1, x2) -> begin
let ex2 = eval x2 in
if ex2 = 0 then Fcl_debug.fatal_error "Expr.eval: division by zero";
let ex1 = eval x1 in
match typ with Dive -> ex1 / ex2 | Mode -> ex1 mod ex2 end
| Un (Abse, x) -> abs (eval x)
| Agg (typ, es, c) ->
let (op, coef_op) =
match typ with
Pluse -> (( + ), ( * )) | Multe -> (( * ), Fcl_nonlinear.expn_int) in
List.fold_left
(fun acc (coef, se) -> op acc (coef_op (eval se) coef))
c es
(* order on lists according to their size then to each element
according to [cmp] *)
let compare_list cmp lx ly =
let rec comp_iter lx ly =
match (lx, ly) with
([], []) -> 0
| (x :: xs, y :: ys) ->
let cxy = cmp x y in if cxy <> 0 then cxy else comp_iter xs ys
| _ -> assert false in
let cs = compare (List.length lx) (List.length ly) in
if cs <> 0 then cs else comp_iter lx ly
let compare_var x y =
match (x, y) with
(Var x, Var y) -> Fd.compare x y
| (Aux x, Aux y) -> compare x y
| (Aux _, Var _) -> -1 | (Var _, Aux _) -> 1
(* order on compiled expressions *)
let rec compare_expr x y =
match (x, y) with
(* same constructors *)
(Inte x, Inte y) -> compare x y
| (Fde x, Fde y) -> compare_var x y
| (Un (opx, x), Un (opy, y)) ->
let cop = compare opx opy in
if cop <> 0 then cop else compare_expr x y
| (Bin (opx, x1, x2), Bin (opy, y1, y2)) ->
let cop = compare opx opy in
if cop <> 0 then cop
else
let c1 = compare_expr x1 y1 in
if c1 <> 0 then c1 else compare_expr x2 y2
| (Agg (opx, lx, cx), Agg (opy, ly, cy)) ->
let cop = compare opx opy in
if cop <> 0 then cop
else
let cc = compare cx cy in
if cc <> 0 then cc
else
(* lx and ly are supposed to be already sorted *)
(* let lx = List.sort compare_intexpr lx
and ly = List.sort compare_intexpr ly in *)
compare_list compare_intexpr lx ly
(* different constructors *)
| (Inte _, _) -> -1 | (_, Inte _) -> 1
| (Fde _, _) -> -1 | (_, Fde _) -> 1
| (Un _, _) -> -1 | (_, Un _) -> 1
| (Bin _, _) -> -1 | (_, Bin _) -> 1
(* order on (int * exp) couples *)
and compare_intexpr (cx, ex) (cy, ey) =
let cc = compare cx cy in
if cc <> 0 then cc else compare_expr ex ey
type exp = t
(* module parameter for Hashtbl functor *)
module Exp_for_H = struct
type t = exp
(* alternative representation of compiled expressions for hashing:
variables domains are replaced by their id *)
type varh = Varh of int | Auxh of int
type th =
Aggh of agg_op * (int * th) list * int
| Binh of bin_op * th * th
| Unh of un_op * th
| Inteh of int
| Fdeh of varh
let rec t2th = function
Agg (op, l, c) ->
(* l is supposed to be already sorted *)
(* let l = List.sort compare_intexpr l in*)
let lh = List.map (fun (c, e) -> (c, t2th e)) l in
Aggh (op, lh, c)
| Bin (op, e1, e2) -> Binh (op, t2th e1, t2th e2)
| Un (op, e) -> Unh (op, t2th e)
| Inte c -> Inteh c
| Fde x -> begin
match x with
Var v -> begin
match Fd.value v with
Unk _ -> Fdeh (Varh (Fd.id v))
| Val c -> Inteh c end
| Aux i -> Fdeh (Auxh i) end
let equal x y = compare_expr x y = 0
let hash e = Hashtbl.hash (t2th e)
end
(* Hashtbl on compiled expressions *)
module HE = Hashtbl.Make(Exp_for_H)
(* deprecated conversion function between former expressions
representation and current one *)
(*
let rec user2exp = function
Int i -> Inte i
| Fd v -> begin match Fd.value v with Val i -> Inte i | _ -> Fde v end
| Plus (e1, e2) ->
let l = [(1, user2exp e1); (1, user2exp e2)] in
let l = List.sort compare_intexpr l in
Agg (Pluse, l, 0)
| Mult (e1, e2) ->
let l = [(1, user2exp e1); (1, user2exp e2)] in
let l = List.sort compare_intexpr l in
Agg (Multe, l, 1)
| Minus e -> Agg (Pluse, [(-1, user2exp e)], 0)
| Div (e1, e2) -> Bin (Dive, user2exp e1, user2exp e2)
| Mod (e1, e2) -> Bin (Mode, user2exp e1, user2exp e2)
| Abs e -> Un (Abse, user2exp e)
*)
let merge es =
let coef_exps = HE.create 11 in
let add_or_create (c, e) =
try
let oldc = HE.find coef_exps e in
oldc := !oldc + c
with Not_found -> HE.add coef_exps e (ref c) in
List.iter add_or_create es;
let l =
HE.fold (fun e c acc -> if !c <> 0 then (!c, e) :: acc else acc)
coef_exps [] in
List.sort compare_intexpr l
(* normalize expressions *)
let rec reduce = function
Inte _ as e -> e | Fde _ as e -> e
| Bin (Dive, e1, e2) -> begin
match (reduce e1, reduce e2) with
(_, Inte 0) -> Fcl_debug.fatal_error "Arith.reduce: division by zero"
| (re1, Inte 1) -> re1
| (Inte 0 as re1, _) -> re1
| (Inte i1, Inte i2) -> Inte (i1 / i2)
| (re1, re2) -> Bin (Dive, re1, re2) end
| Bin (Mode, e1, e2) -> begin
match (reduce e1, reduce e2) with
(_, Inte 0) -> Fcl_debug.fatal_error "Arith.reduce: modulo by zero"
| (_, Inte 1) -> Inte 0
| (Inte 0 as re1, _) -> re1
| (Inte i1, Inte i2) -> Inte (i1 mod i2)
| (re1, re2) -> Bin (Mode, re1, re2) end
| Un (Abse, e) -> begin
match reduce e with
Inte i -> Inte (abs i)
| re -> Un (Abse, re) end
| Agg (typ, es, c) -> begin
match agg_reduce typ es c with
(0, _) when typ = Multe -> Inte 0
| (rc, []) -> Inte rc
| (0, [(1, e)]) when typ = Pluse -> e
| (1, [(1, e)]) when typ = Multe -> e
(* type of aggregate is changed, so it is reduced once more *)
| (rc, [(1, e)]) when typ = Multe -> reduce (Agg (Pluse, [(rc, e)], 0))
(* Pi res * rc -> Sum rc * (Pi res * 1) + 0 *)
| (rc, res) when typ = Multe && rc <> 1 ->
Agg (Pluse, [(rc, Agg (Multe, res, 1))], 0)
| (rc, res) -> Agg (typ, res, rc) end
and agg_reduce typ es c =
let (op, coef_op) =
match typ with
Pluse -> (( + ), ( * )) | Multe -> (( * ), Fcl_nonlinear.expn_int) in
let rec agg_reduce_rec new_es c = function
[] -> (c, merge new_es)
| (0, _) :: es -> agg_reduce_rec new_es c es
| (coef, e) :: es -> begin
match reduce e with
(* Pi ... * 0 ^ coef * ... -> 0 *)
Inte 0 when typ = Multe -> (0, [])
| Inte i -> agg_reduce_rec new_es (op c (coef_op i coef)) es
(* Sum ... + coef * (Sum ees + ec) + ... -> Sum ... *)
(* Pi ... * (ec * Pi ees) ^ coef * ... -> Pi ... *)
| Agg (etyp, ees, ec) when etyp = typ ->
let new_ees = List.map (fun (eec, ee) -> (coef * eec, reduce ee)) ees in
agg_reduce_rec (new_ees @ new_es) (op c (coef_op ec coef)) es
(* Sum ... + coef * (ec * Pi ee) + ... -> Sum ... + coef * ec * ee + ... *)
| Agg (Multe, [(1, ee)], ec) when typ = Pluse ->
agg_reduce_rec ((coef * ec, ee) :: new_es) c es
(* Sum ... + coef * (ec * Pi ees) + ... ->
Sum ... + (coef * ec) * (Pi ee) + ... *)
| Agg (Multe, ees, ec) when typ = Pluse ->
agg_reduce_rec ((coef * ec, Agg (Multe, ees, 1)) :: new_es) c es
(* Pi ... * (Sum ec * ee) ^ coef * ... ->
Pi ... * ee ^ coef * ... * (c * ec ^ coef) *)
| Agg (Pluse, [(ec, ee)], 0) when typ = Multe ->
agg_reduce_rec ((coef, ee) :: new_es) (op c (coef_op ec coef)) es
| re -> agg_reduce_rec ((coef, re) :: new_es) c es end in
agg_reduce_rec [] c es
(* compute intermediate equation and symbolic auxilliary variables *)
let equations e =
(* auxilliary variables are first only named (not created) to
avoid computing useless expression bounds (allows Linear.basic_refinements
to be used on plain sums) and variables (the last one for equality
constraints) *)
let gen_auxvar = Fcl_misc.gen_int_fun () in
let eqs = HE.create 11 in
let add e lhs =
let vaux = gen_auxvar () in
HE.add eqs e (vaux, lhs);
Aux vaux in
let rec process = function
(* replace integers by variables inside intermediate equations *)
Inte i -> Var (Fd.elt i)
| Fde v -> v
| e -> begin try let (ve, _eq) = HE.find eqs e in Aux ve with Not_found -> begin
(* computation of intermediate variables and corresponding equations *)
(* constraints are not posted yet *)
match e with
Un (Abse, se) -> let vse = process se in add e (Un (Abse, Fde vse))
| Bin (typ, se1, se2) ->
let vse1 = process se1 and vse2 = process se2 in
add e (Bin (typ, Fde vse1, Fde vse2))
| Agg (_, [], _) ->
Fcl_debug.internal_error "Expr.equations: empty aggregate list"
| Agg (Pluse, ses, c) -> begin
let vses = List.map (fun (coef, se) -> (coef, Fde (process se))) ses in
add e (Agg (Pluse, vses, c)) end
| Agg (Multe, [(coef, se)], 1) -> begin
assert (coef > 1);
let vse = process se in
add e (Agg (Multe, [(coef, Fde vse)], 1)) end
| Agg (Multe, ses, 1) -> begin
(* intermediate exponentiation *)
let vses =
List.map
(function
(1, se) as coef_se -> (process se, coef_se)
| (coef, se) as coef_se ->
let vse_coef = process (Agg (Multe, [(coef, se)], 1)) in
(* couples with coef are kept for further hashing
of partial products *)
(vse_coef, coef_se)) ses in
let vses =
List.sort
(fun (_, coef_se1) (_, coef_se2) -> compare_intexpr coef_se1 coef_se2)
vses in
let (vaux, _) = fold_multe vses in
vaux end
| Agg (Multe, _, _) ->
Fcl_debug.internal_error "Expr.equations: non neutral product constant"
| _ -> assert false end end
and fold_multe = function
[(vse, coef_se)] -> (vse, [coef_se])
| (vse, coef_se) :: rest -> begin
let (acc_vaux, acc_exp) = fold_multe rest in
let lhs_list = List.sort compare_intexpr [(1, Fde vse); (1, Fde acc_vaux)] in
let lhs = Agg (Multe, lhs_list, 1) in
let vses = coef_se :: acc_exp in
let e = Agg (Multe, vses, 1) in
let vaux = add e lhs in
(vaux, vses) end
| _ -> Fcl_debug.internal_error "Expr.fold_multe: empty list" in
let vfinal = process e in
(vfinal, eqs)
let fprint_eqs c eqs =
List.iter
(fun (vaux, lhs) ->
Printf.fprintf c "%a = %a\n" fprint_var (Aux vaux) fprint lhs) eqs
let bintype2cstr = function
Dive -> Fcl_nonlinear.division | Mode -> Fcl_nonlinear.modulo
let bintype2aux = function
Dive -> Fcl_nonlinear.division_aux | Mode -> Fcl_nonlinear.modulo_aux
let emptyh h =
try HE.iter (fun _ _ -> raise Exit) h; true with Exit -> false
let interm eqs re =
try let (_, term) = HE.find eqs re in term with Not_found -> re
let get_var vars = function
Var v -> v | Aux i -> Hashtbl.find vars i
let intfde2intfd vars vses =
List.map
(function
(coef, Fde vse) -> (coef, get_var vars vse)
| _ -> assert false)
vses
let post_eqs eqs =
let vars = Hashtbl.create 11 in
let eqs_list = HE.fold (fun _ eq acc -> eq :: acc) eqs [] in
(* equations must be sorted to generate auxilliary variables in the right order *)
let eqs_sorted = List.sort (fun (i1, _) (i2, _) -> compare i1 i2) eqs_list in
Fcl_debug.call 'a' (fun s -> Printf.fprintf s "to be posted:\n%a\n" fprint_eqs eqs_sorted);
List.iter
(fun (i, lhs) ->
let cstr =
match lhs with
Un (Abse, Fde vse) -> begin
let vse = get_var vars vse in
let vaux = Fcl_nonlinear.absolute_aux vse in
Hashtbl.add vars i vaux;
Fcl_nonlinear.absolute vaux vse end
| Bin (typ, Fde vse1, Fde vse2) -> begin
let vse1 = get_var vars vse1 and vse2 = get_var vars vse2 in
let vaux = (bintype2aux typ) vse1 vse2 in
Hashtbl.add vars i vaux;
(bintype2cstr typ) vaux vse1 vse2 end
| Agg (Multe, [(coef, Fde vse)], 1) -> begin
assert (coef > 1);
let vse = get_var vars vse in
let vaux = Fcl_nonlinear.expn_aux vse coef in
Hashtbl.add vars i vaux;
Fcl_nonlinear.expn vaux vse coef end
| Agg (Pluse, vses, c) -> begin
assert (match (vses, c) with ([(1, _)], 0) -> false | _ -> true);
let vses = List.map
(function
(coef, Fde vse) -> (coef, get_var vars vse)
| _ -> assert false) vses in
let vaux = Fcl_linear.linear_aux vses (0 - c) in
Hashtbl.add vars i vaux;
Fcl_linear.cstr ((-1, vaux) :: vses) Fcl_linear.Equal (0 - c) end
| Agg (Multe, [(1, Fde vse1); (1, Fde vse2)], 1) -> begin
let vse1 = get_var vars vse1 and vse2 = get_var vars vse2 in
let vaux = Fcl_nonlinear.monome_aux vse1 vse2 in
Hashtbl.add vars i vaux;
Fcl_nonlinear.monome vaux vse1 vse2 end
| _ -> assert false in
Fcl_cstr.post cstr)
eqs_sorted;
vars
(* remove vse = ct when vse = a simple nonlinear equation *)
let remove_basic_cstr1 eqs vse sre ct =
match interm eqs sre with
Un (Abse, Fde vsse) -> begin
HE.remove eqs sre;
let vars = post_eqs eqs in
let vsse = get_var vars vsse in
Fcl_nonlinear.absolute (Fcl_var.Fd.int ct) vsse end
| Bin (typ, Fde vsse1, Fde vsse2) -> begin
HE.remove eqs sre;
let vars = post_eqs eqs in
let vsse1 = get_var vars vsse1 and vsse2 = get_var vars vsse2 in
(bintype2cstr typ) (Fcl_var.Fd.int ct) vsse1 vsse2 end
| Agg (Multe, [(1, Fde vsse1); (1, Fde vsse2)], 1) -> begin
HE.remove eqs sre;
let vars = post_eqs eqs in
let vsse1 = get_var vars vsse1 and vsse2 = get_var vars vsse2 in
Fcl_nonlinear.monome (Fcl_var.Fd.int ct) vsse1 vsse2 end
| Agg (Multe, [(coef, Fde vsse)], 1) -> begin
HE.remove eqs sre;
let vars = post_eqs eqs in
let vsse = get_var vars vsse in
Fcl_nonlinear.expn (Fcl_var.Fd.int ct) vsse coef end
| _ ->
let vars = post_eqs eqs in
let vse = get_var vars vse in
Fcl_linear.cstr [(1, vse)] Fcl_linear.Equal ct
(* remove vse1 = vse2 when vse1 or vse2 = a simple nonlinear equation *)
let remove_basic_cstr2 eqs vse1 vse2 sre1 sre2 =
match (interm eqs sre1, interm eqs sre2) with
(Un (Abse, Fde vsse1), _) -> begin
HE.remove eqs sre1;
let vars = post_eqs eqs in
let vse2 = get_var vars vse2 and vsse1 = get_var vars vsse1 in
Fcl_nonlinear.absolute vse2 vsse1 end
| (_, Un (Abse, Fde vsse2)) -> begin
HE.remove eqs sre2;
let vars = post_eqs eqs in
let vse1 = get_var vars vse1 and vsse2 = get_var vars vsse2 in
Fcl_nonlinear.absolute vse1 vsse2 end
| (Bin (typ, Fde vsse1, Fde vsse2), _) -> begin
HE.remove eqs sre1;
let vars = post_eqs eqs in
let vsse1 = get_var vars vsse1 and vsse2 = get_var vars vsse2
and vse2 = get_var vars vse2 in
(bintype2cstr typ) vse2 vsse1 vsse2 end
| (_, Bin (typ, Fde vsse1, Fde vsse2)) -> begin
HE.remove eqs sre2;
let vars = post_eqs eqs in
let vsse1 = get_var vars vsse1 and vsse2 = get_var vars vsse2
and vse1 = get_var vars vse1 in
(bintype2cstr typ) vse1 vsse1 vsse2 end
| (Agg (Multe, [(1, Fde vsse1); (1, Fde vsse2)], 1), _) -> begin
HE.remove eqs sre1;
let vars = post_eqs eqs in
let vsse1 = get_var vars vsse1 and vsse2 = get_var vars vsse2
and vse2 = get_var vars vse2 in
Fcl_nonlinear.monome vse2 vsse1 vsse2 end
| (_, Agg (Multe, [(1, Fde vsse1); (1, Fde vsse2)], 1)) -> begin
HE.remove eqs sre2;
let vars = post_eqs eqs in
let vsse1 = get_var vars vsse1 and vsse2 = get_var vars vsse2
and vse1 = get_var vars vse1 in
Fcl_nonlinear.monome vse1 vsse1 vsse2 end
| (Agg (Multe, [(coef, Fde vsse)], 1), _) -> begin
HE.remove eqs sre1;
let vars = post_eqs eqs in
let vsse = get_var vars vsse and vse2 = get_var vars vse2 in
Fcl_nonlinear.expn vse2 vsse coef end
| (_, Agg (Multe, [(coef, Fde vsse)], 1)) -> begin
HE.remove eqs sre2;
let vars = post_eqs eqs in
let vsse = get_var vars vsse and vse1 = get_var vars vse1 in
Fcl_nonlinear.expn vse1 vsse coef end
| _ ->
let vars = post_eqs eqs in
let vse1 = get_var vars vse1 and vse2 = get_var vars vse2 in
Fcl_linear.cstr [(-1, vse1); (1, vse2)] Fcl_linear.Equal 0
let constrain e rel =
(* e rel 0 *)
let re = reduce e in
(* vfinal = re, vfinal rel 0 *)
let (vfinal, eqs) = equations re in
(* termfinal rel 0 *)
(* (Inte i) cannot appear in equations but may in [re] when eqs is empty *)
(* get final equation: vfinal = termfinal *)
let termfinal = interm eqs re in
let cstr =
match rel with
Fcl_linear.Equal -> begin
(* last equation is useless *)
HE.remove eqs re;
match termfinal with
Inte 0 -> begin assert (emptyh eqs); Fcl_cstr.one end (* 0 = 0 *)
| Inte i -> begin ignore i;assert (emptyh eqs); Fcl_cstr.zero end (* i = 0 *)
| Fde x ->
let vars = post_eqs eqs in
let v = get_var vars x in
Fcl_linear.cstr [(1, v)] Fcl_linear.Equal 0 (* v = 0 *)
| Un (Abse, Fde vse) -> (* |v| = 0 *)
let vars = post_eqs eqs in
let vse = get_var vars vse in
Fcl_linear.cstr [(1, vse)] Fcl_linear.Equal 0
| Bin (typ, Fde vse1, Fde vse2) ->
let vars = post_eqs eqs in
let vse1 = get_var vars vse1 and vse2 = get_var vars vse2 in
(bintype2cstr typ) (Fd.int 0) vse1 vse2
| Agg (Multe, [(1, Fde vse1); (1, Fde vse2)], 1) ->
let vars = post_eqs eqs in
let vse1 = get_var vars vse1 and vse2 = get_var vars vse2 in
Fcl_nonlinear.monome (Fd.int 0) vse1 vse2
| Agg (Multe, [(coef, Fde vse)], 1) -> begin
assert (coef > 1); (* only true exponentiation *)
(* vse ^ n = 0 <=> vse = 0 *)
let vars = post_eqs eqs in
let vse = get_var vars vse in
Fcl_linear.cstr [(1, vse)] Fcl_linear.Equal 0 end
| Agg (Pluse, vses, ct) -> begin
(* vse1 = vse2 or vse = ct
here we can remove some useless equations if one of
the two subexpressions is a simple non-linear expression *)
match vses with
[(-1, Fde vse1); (1, Fde vse2)] when ct = 0 -> begin
match re with (* vse1 = sre1 and vse2 = sre2 *)
Agg (Pluse, [(-1, sre1); (1, sre2)], 0) ->
remove_basic_cstr2 eqs vse1 vse2 sre1 sre2
| _ -> assert false end
| [(-1, Fde vse)] -> begin (* vse = ct *)
match re with
Agg (Pluse, [(-1, sre)], ct) ->
remove_basic_cstr1 eqs vse sre ct
| _ -> assert false end
| [(1, Fde vse)] -> begin (* vse = ct *)
match re with
Agg (Pluse, [(1, sre)], ct) ->
remove_basic_cstr1 eqs vse sre (0 - ct)
| _ -> assert false end
| _ -> (* no simplification *)
let vars = post_eqs eqs in
let vses = intfde2intfd vars vses in
Fcl_linear.cstr vses Fcl_linear.Equal (0 - ct) end
| _ -> assert false end
| _ -> begin (* constraint is not =~ *)
match termfinal with
Inte i -> begin
assert (emptyh eqs); (* no intermediate equations *)
match rel with
Fcl_linear.Diff -> if i = 0 then Fcl_cstr.zero else Fcl_cstr.one
| Fcl_linear.LessThan -> if i <= 0 then Fcl_cstr.one else Fcl_cstr.zero
| _ -> assert false end
| Fde v -> begin
assert (emptyh eqs); (* no intermediate equations *)
let v = match v with Var v -> v | _ -> assert false in
let cstr = Fcl_linear.cstr [(1, v)] rel 0 in
cstr end
| Agg (Pluse, vses, ct) -> begin
(* final intermediate equation is removed because it can be
directly returned *)
HE.remove eqs re;
let vars = post_eqs eqs in
let vses = intfde2intfd vars vses in
Fcl_linear.cstr vses rel (0 - ct) end
| _ ->
(* all other cases, but we could check if [termfinal] is well formed
with an OR-pattern *)
let vars = post_eqs eqs in
let vfinal = get_var vars vfinal in
Fcl_linear.cstr [(1, vfinal)] rel 0 end in
Fcl_debug.call 'a' (fun s -> Printf.fprintf s "final constraint: %a\n" Fcl_cstr.fprint cstr);
cstr
|