File: fcl_nonlinear.ml

package info (click to toggle)
facile 1.1.4-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 716 kB
  • sloc: ml: 6,862; makefile: 90
file content (649 lines) | stat: -rw-r--r-- 22,936 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
(***********************************************************************)
(*                                                                     *)
(*                           FaCiLe                                    *)
(*                 A Functional Constraint Library                     *)
(*                                                                     *)
(*            Nicolas Barnier, Pascal Brisset, LOG, CENA               *)
(*                                                                     *)
(* Copyright 2004 CENA. All rights reserved. This file is distributed  *)
(* under the terms of the GNU Lesser General Public License.           *)
(***********************************************************************)
(* $Id: fcl_nonlinear.ml,v 1.8 2004/08/12 15:22:07 barnier Exp $ *)

open Fcl_var
open Fcl_misc.Operators
open Printf
module C = Fcl_cstr
module Linear = Fcl_linear


(*** Bounds evaluation ***)

(* signs differ with x <= y *)
let diffsign x y = assert (x <= y); x < 0 && y > 0
let diffeqsign x y = assert (x <= y); x <= 0 && y >= 0
(* unsorted diffsign *)
let udiffsign x y = if x <= y then diffsign x y else diffsign y x

(* min_of_absmod for min_max_of_expr when bounds are already known
   AND positive *)
let min_of_absmod_inter a b c d =
  assert (a >= 0 && c >= 0);
  if b < c then a
  else (* 0 *)
  (* on peut faire mieux quand c=d (i.e. x2 connu) *)
    if c = d then
      if c = 0 then
	Fcl_debug.fatal_error "Arith.min_of_absmod_inter: division_by_zero"
      else
	let amodc = a mod c in
	if b - a + amodc < c then amodc else 0
    else 0

(* max_of_absmod for min_max_of_expr when bounds are already known
   AND positive *)
let max_of_absmod_inter a b c d =
  assert (a >= 0 && c >= 0);
  if b < d then b
  else (* d - 1 *)
  (* we could do more when c=d (i.e. x2 known) *)
    if c = d then
      if c = 0 then
	Fcl_debug.fatal_error "Arith.max_of_absmod_inter: division_by_zero"
      else
	let bmodc = b mod c in
	if bmodc - (b - a) > 0 then bmodc else d - 1
    else d - 1


(* Implementation of non-linear constraints (z = x*y, x^n, x/y, |x|, x%y) *)

(*** monome constraint: z = x * y ***)

let min_max_mult_inter a b c d =
  if diffeqsign a b || diffeqsign c d then
    (* one of the two domains contains 0 *)
    (min (a*d) (b*c), max (a*c) (b*d))
  else if udiffsign a c then (* domains not on the same side of 0 *)
    if a > 0 then (b*c, a*d) else (a*d, b*c)
  else (* same side *)
    if a > 0 then (a*c, b*d) else (b*d, a*c)

(* y = z[a,b] / x[c,d] *)
(* compute bounds to refine y *)
let min_max_of_div_for_mult z x =
  (* if 0 belongs to dom(x), no conclusion on y *)
  if Fd.member x 0 then (min_int, max_int) else
  let (a, b) = Fd.min_max z and (c, d) = Fd.min_max x in
  (* is this useful? only waken on min or max modif... *)
  if diffsign c d then (* c < 0 < d*)
    match Fd.value x with
      Unk xa ->
	let (c', d') = Fcl_domain.largest_hole_around (Attr.dom xa) 0 in
	(min (a /+ d') (b /+ c'), max (a /- c') (b /- d'))
      (* if x was ground, c*d >= 0 *)
    | _ -> Fcl_debug.internal_error "min_max_of_div_for_mult: x ground"
  (* 0 < c || d < 0 *)
  else if diffsign a b then (* a < 0 < b *)
    if c > 0 then (a /+ c, b /- c) else (b /+ d, a /- d)
  (* 0 does not belong to dom(z) or dom(x) *)
  else
    if a >= 0 then (* z >= 0 *)
      if c > 0 then (a /+ d, b /- c) else (b /+ d, a /- c) (* x pos or neg *)
    else (* z <= 0 *)
      if c < 0 then (b /+ c, a /- d) else (a /+ c, b /- d) (* x neg or pos *)

(* z = x*y *)
let monome z x y =
  let name = "monome" in  
  let zero_removed = Fcl_stak.ref false in
  let update_val_unk a y =
    match Fd.value z with
      Val c -> (* a <> 0 *)
	if c mod a = 0 then (Fd.unify y (c / a); true)
	else Fcl_stak.fail (name ^ ": Val a, Unk _, Val c")
    | Unk _ ->
	C.post (Linear.cstr [(1, z); (-a, y)] Linear.Equal 0); true in
  let compute_bounds () = (Fd.min_max z, Fd.min_max x, Fd.min_max y) in

  let delay c =
    delay [Fd.on_min; Fd.on_max] z c;
    delay [Fd.on_min; Fd.on_max] x c;
    delay [Fd.on_min; Fd.on_max] y c

  and fprint c =
    Printf.fprintf c "%a = %a * %a" Fd.fprint z Fd.fprint x Fd.fprint y;
    flush c

  and update _ =
    Fcl_debug.call 'a' (fun s -> fprintf s "%s - before update : %a = %a * %a\n" name Fd.fprint z Fd.fprint x Fd.fprint y);

    let rec loop () =
      match Fd.value x, Fd.value y with
	Val a, Val b -> Fd.unify z (a * b); true
      | (Val 0, _  | _, Val 0) ->  Fd.unify z 0; true
      | Val a, Unk _ -> update_val_unk a y
      | Unk _, Val b -> update_val_unk b x
(* On pourrait aussi traiter le cas z = Val 1 (idem pour expn) *)
      | Unk xa, Unk ya ->
	  match Fd.value z with
	    Val 0 ->
	      let xa_with_0 = Attr.member xa 0
	      and ya_with_0 = Attr.member ya 0 in
	      if xa_with_0 then begin
		if not ya_with_0 then begin
		  Fd.unify x 0; true end
		else false end
	      else if ya_with_0 then begin
		Fd.subst y 0; true end
	      else Fcl_stak.fail (name ^ ": Unk xa, Unk ya, Val c")
	  | _z_val ->
	      (* On essaie d'enlever d'abord 0 dans x et y sinon pas de
		 propagation *)
	      if not (Fcl_stak.get zero_removed) && not (Fd.member z 0) then begin
		Fcl_stak.set zero_removed true;
		Fd.refine x (Fcl_domain.remove 0 (Attr.dom xa));
		Fd.refine y (Fcl_domain.remove 0 (Attr.dom ya));
	        (* x et y peuvent etre instancies *)
		loop () end
	      else begin
		let bounds = compute_bounds () in
		let (a, b) = Fd.min_max x and (c, d) = Fd.min_max y in
		let (z_min, z_max) = min_max_mult_inter a b c d in
		Fcl_debug.call 'a' (fun s -> fprintf s "%s - Unk xa, Unk ya, z : z_min=%d z_max=%d " name z_min z_max);
		Fd.refine_low_up z z_min z_max;
		
		let (y_min, y_max) = min_max_of_div_for_mult z x in
		Fcl_debug.call 'a' (fun s -> fprintf s "y_min=%d y_max=%d " y_min y_max);
		Fd.refine_low_up y y_min y_max;
		
		let (x_min, x_max) = min_max_of_div_for_mult z y in
		Fcl_debug.call 'a' (fun s -> fprintf s "x_min=%d x_max=%d\n" x_min x_max);
		Fd.refine_low_up x x_min x_max;
	        (* On rappelle update pour atteindre le point fixe *)
		if bounds <> compute_bounds () then loop () else false end in
    let r = loop () in
    Fcl_debug.call 'a' (fun s -> fprintf s "%s - after update : %a = %a * %a\n" name Fd.fprint z Fd.fprint x Fd.fprint y);
    r in

  C.create ~name ~fprint update delay


let min_max_abs_for_abs x =
  match Fd.value x with
    Val a -> let absa = abs a in (absa, absa)
  | Unk xa ->
      let a = Attr.min xa and b = Attr.max xa in
      if a >= 0 then (a, b) else if b <= 0 then (-b, -a) else
      (* x  cheval sur 0 *)
      let domx = Attr.dom xa in
      let a' = Fcl_domain.greatest_leq domx 0
      and b' = Fcl_domain.smallest_geq domx 0 in
      (min (-a') b', max (-a) b)

let absolute z x =
  let name = "absolute" in

  let delay c = (* We could delay on_refine for x *)
    delay [Fd.on_min; Fd.on_max] z c;
    delay [Fd.on_min; Fd.on_max] x c

  and fprint c =
    Printf.fprintf c "%a = |%a|" Fd.fprint z Fd.fprint x; flush c

  and update _ =
    Fcl_debug.call 'a' (fun s -> fprintf s "%s - before update : %a=|%a|\n" name Fd.fprint z Fd.fprint x);
    
    let r = match Fd.value x with
      Val a -> Fd.unify z (abs a); true
    | Unk xa ->
	if Attr.min xa >= 0 then begin
	  C.post (Linear.cstr [(1, z); (-1, x)] Linear.Equal 0);
 	  true end
	else if Attr.max xa <= 0 then begin
	  C.post (Linear.cstr [(1, z); (1, x)] Linear.Equal 0);
 	  true end
	else
	  match Fd.value z with
	    Val c -> begin
	      Fd.refine x
		(Fcl_domain.intersection
		   (Fcl_domain.create [-c; c]) (Attr.dom xa));
	      true end
	  | Unk _ -> begin
	      let (z_min, z_max) = min_max_abs_for_abs x in
	      Fd.refine_low_up z z_min z_max;

	      let z_min, z_max = Fd.min_max z in
	      assert (z_min >= 0);
	      let d =
		Fcl_domain.remove_closed_inter (-z_min+1) (z_min-1)
		  (Fcl_domain.remove_low_up (-z_max) z_max (Attr.dom xa)) in
	      Fd.refine x d;
	      false end in

    Fcl_debug.call 'a' (fun s -> fprintf s "%s - after update : %a=|%a|\n" name Fd.fprint z Fd.fprint x);
    r in

  C.create ~name ~fprint update delay


(* z = x1 / x2 *)
let min_max_div_inter a b c d =
  if c = d && c = 0 then
    Fcl_stak.fail "Arith.min_max_div_inter: division_by_zero"
  else (* Otherwise, we suppose that x2 won't be instantiated to 0 *)
    let c = if c = 0 then 1 else c and d = if d = 0 then -1 else d in
    if diffsign c d then
      (min a (0 - b), max (0 - a) b)
    else if diffsign a b then
      if c > 0 then (a/c, b/c) else (b/d, a/d)
    else
      if a >= 0 then (* x1 positive *)
	if c > 0 then (a/d, b/c) else (b/d, a/c) (* x2 positive ou negative *)
      else (* x1 negative *)
	if c < 0 then (b/c, a/d) else (a/c, b/d) (* x2 negative ou positive *)

(* y = xr[a,b] / z[c,d] *)
(* a = min (x-r) , b = max (x-r) *)
let min_max_of_div_for_div a b z =
  (* if 0 belongs to dom(x), no conclusion on y *)
  if Fd.member z 0 then (min_int, max_int)
  else
    let (c, d) = Fd.min_max z in
    (* is this useful? only waken on min or max modif... *)
    if sign c * sign d < 0 then (* c < 0 < d *)
      match Fd.value z with
	Unk za ->
	  let domz = Attr.dom za in
	  let (c', d') = Fcl_domain.largest_hole_around domz 0 in
	  (min (a /+ d') (b /+ c'), max (a /- c') (b /- d'))
        (* if z was ground, c*d >= 0 *)
      |	_ -> Fcl_debug.internal_error "min_max_of_div_for_mult : z ground"
    (* 0 < c || d < 0 *)
    else if sign a * sign b < 0 then (* a < 0 < b *)
      if c > 0 then (a /+ c, b /- c) else (b /+ d, a /- d)
    else
      if a >= 0 then (* xr positive *)
	if c > 0 then (a /+ d, b /- c) else (b /+ d, a /- c) (* z positive or negative *)
      else (* xr negative *)
	if c < 0 then (b /+ c, a /- d) else (a /+ c, b /- d) (* z negative or positive *)

(* z=x/y, x=y*z+r *)
(* if x >= 0 then r >= 0 else r <= 0 *)
let min_max_of_remainder x y =
  let r_abs_max =
    let min_y, max_y = Fd.min_max y in
    max (Stdlib.abs min_y) (Stdlib.abs max_y) - 1 in
  if Fd.min x >= 0 then (0, r_abs_max)
  else if Fd.max x <= 0 then ((0 - r_abs_max), 0)
  else ((0 - r_abs_max), r_abs_max)

(* z = x / y *)
let division z x y =
  let zero_removed = Fcl_stak.ref false in
  let min_max_r () = min_max_of_remainder x y in
  let compute_bounds () =
    (Fd.min_max z, Fd.min_max x, Fd.min_max y) in
    
  let name = "division" in

  let delay c =
    delay [Fd.on_min; Fd.on_max] z c;
    delay [Fd.on_min; Fd.on_max] x c;
    delay [Fd.on_min; Fd.on_max] y c
      
  and fprint c =
    Printf.fprintf c "%a = %a / %a" Fd.fprint z Fd.fprint x Fd.fprint y;
    flush c

  and update _ =
    Fcl_debug.call 'a' (fun s -> fprintf s "%s - before update : %a = %a / %a\n" name Fd.fprint z Fd.fprint x Fd.fprint y);

    if not (Fcl_stak.get zero_removed) then begin
      begin match Fd.value y with
	Unk ya -> Fd.refine y (Fcl_domain.remove 0 (Attr.dom ya))
      | Val 0 -> Fcl_stak.fail (name ^ ": division by zero")
      | _ -> () end;
      Fcl_stak.set zero_removed true end;

    (* 0 does not belong to dom(y) *)
    let rec loop bounds =
      match Fd.value x, Fd.value y with
	Val a, Val b -> Fd.unify z (a / b); true
      | Val 0, _ -> Fd.unify z 0; true
      | _x_val, _y_val ->
	  let (a, b) = Fd.min_max x and (c, d) = Fd.min_max y in
	  let (z_min, z_max) = min_max_div_inter a b c d in
	  Fcl_debug.call 'a' (fun s -> fprintf s "z_min=%d z_max=%d " z_min z_max);
	  Fd.refine_low_up z z_min z_max;
	  
	  (* x = y*z + r *)
	  let (a, b) = Fd.min_max y and (c, d) = Fd.min_max z in
	  let (yz_min, yz_max) = min_max_mult_inter a b c d
	  and (r_min, r_max) = min_max_r () in
	  let (x_min, x_max) =
	    Linear.min_max_plus_inter yz_min yz_max r_min r_max in
	  Fcl_debug.call 'a' (fun s -> fprintf s "x_min=%d x_max=%d " x_min x_max);
	  Fd.refine_low_up x x_min x_max;
	  
	  (* y = (x-r) / z *)
	  let (r_min, r_max) = min_max_r () in
	  let xr_min = Fd.min x - r_max and xr_max = Fd.max x - r_min in
	  let (y_min, y_max) = min_max_of_div_for_div xr_min xr_max z in
	  Fcl_debug.call 'a' (fun s -> fprintf s "y_min=%d y_max=%d\n" y_min y_max);
	  Fd.refine_low_up y y_min y_max;

	  let new_bounds = compute_bounds () in
	  if bounds <> new_bounds then loop new_bounds else false in
    let r = loop (compute_bounds ()) in
    
    Fcl_debug.call 'a' (fun s -> fprintf s "%s - after update : %a = %a / %a\n" name Fd.fprint z Fd.fprint x Fd.fprint y);
    r in
  
  C.create ~name ~fprint update delay



let min_max_abs_inter a b =
  if a >= 0 then (a, b)
  else if b <= 0 then (0 - b, 0 - a)
  else (0, max (0 - a) b)

let min_max_mod_inter a b c d =
  let (c, d) = min_max_abs_inter c d in
  if a >= 0 then (* x1 >= 0 *)
    (min_of_absmod_inter a b c d, max_of_absmod_inter a b c d)
  else if b <= 0 then (* x1 <= 0 *)
    let (a, b) = min_max_abs_inter a b in
    (0 - max_of_absmod_inter a b c d, 0 - min_of_absmod_inter a b c d)
  else (0 - max_of_absmod_inter 0 (-a) c d, max_of_absmod_inter 0 b c d)

(* y = (x-z) / (x/y) *)
let min_max_of_div_for_mod a b c d =
  (* if 0 belongs to domain of x/y, no conclusion on y *)
  if c <= 0 && d >= 0 then
    (min_int, max_int)
  else (* x/y positive ou negative *)
    if sign a * sign b < 0 then (* xz  cheval sur 0 *)
      if c > 0 then (a /+ c, b /- c) else (b /+ d, a /- d)
    (* ni xz ni x/y  cheval sur 0 *)
    else if a >= 0 then (* xz positive *)
      if c > 0 then (a /+ d, b /- c) else (b /+ d, a /- c) (* x/y positive ou negative *)
    else (* xz negative *)
      if c < 0 then (b /+ c, a /- d) else (a /+ c, b /- d) (* x/y negative ou positive *)

(* z = x % y *)
let modulo z x y =
  let zero_removed = Fcl_stak.ref false in
  let min_max_of_xexp () =
    let (xa, xb) = Fd.min_max x and (yc, yd) = Fd.min_max y in
    let (xyc, xyd) = min_max_div_inter xa xb yc yd in
    let (yxya, yxyb) = min_max_mult_inter yc yd xyc xyd in
    let (zc, zd) = Fd.min_max z in
    let xmin, xmax = Linear.min_max_plus_inter yxya yxyb zc zd in
    let xmin = if zc >= 0 then max 0 xmin else xmin
    and xmax = if zd <= 0 then min 0 xmax else xmax in
    (xmin, xmax) in
  let min_max_of_yexp () =
    let (xa, xb) = Fd.min_max x and (zc, zd) = Fd.min_max z in
    let (xza, xzb) = Linear.min_max_minus_inter xa xb zc zd in
    let (yc, yd) = Fd.min_max y in
    let (xyc, xyd) = min_max_div_inter xa xb yc yd in
    min_max_of_div_for_mod xza xzb xyc xyd in

  (* when y is known and b-a < y, c actually is |c| *)
  let hole a b c =
    assert (c >= 0);
    if a >= 0 then (* x >= 0 *)
      let amodc = a mod c and bmodc = b mod c in
      if amodc <= bmodc then
	match Fd.value z with
	  Val v -> (* a/c = b/c *)
	    let xv = c * (a / c) + v in
	    Fd.subst x xv; raise Exit
	| _ -> Fd.refine_low_up z amodc bmodc
      else
	match Fd.value z with
	  Unk attrz ->
	    let newdom = Fcl_domain.union
		(Fcl_domain.interval 0 bmodc) (Fcl_domain.interval amodc (c-1)) in
	    Fd.refine z (Fcl_domain.intersection newdom (Attr.dom attrz))
	| Val v ->
	    let ab = (* a/c = b/c - 1 *)
	      if v >= amodc && v < c then a
	      else if v <= bmodc && v >= 0 then b
	      else Fcl_stak.fail "Nonlinear.modulo" in
	    let xv = c * (ab / c) + v in
	    Fd.subst x xv; raise Exit
    else if b <= 0 then (* x <= 0 *)
      let amodc = a mod c and bmodc = b mod c in
      if amodc <= bmodc then
	match Fd.value z with
	  Val v -> (* a/c = b/c *)
	    let xv = c * (a / c) + v in
	    Fd.subst x xv; raise Exit
	| _ -> Fd.refine_low_up z amodc bmodc
      else
	match Fd.value z with
	  Unk attrz ->
	    let newdom = Fcl_domain.union (* c >= 0 *)
		(Fcl_domain.interval amodc 0) (Fcl_domain.interval (1-c) bmodc) in
	    Fd.refine z (Fcl_domain.intersection newdom (Attr.dom attrz))
	| Val v ->
	    let ab = (* b/c = a/c - 1 *)
	      if v <= bmodc && v > -c then b
	      else if v >= amodc && v <= 0 then a
	      else Fcl_stak.fail "Nonlinear.modulo" in
	    let xv = c * (ab / c) + v in
	    Fd.subst x xv; raise Exit
    (* 0 strictly belongs to [a,b] so -|c| < a < 0 < b < |c| *)
    else Fd.refine_low_up z a b in

  let compute_bounds () = (Fd.min_max z, Fd.min_max x, Fd.min_max y) in
  
  let name = "modulo" in

  let delay c =
    delay [Fd.on_min; Fd.on_max] z c;
    delay [Fd.on_min; Fd.on_max] x c;
    delay [Fd.on_min; Fd.on_max] y c
      
  and fprint c =
    Printf.fprintf c "%a = %a %% %a" Fd.fprint z Fd.fprint x Fd.fprint y;
    flush c

  and update _ =
    Fcl_debug.call 'a' (fun s -> fprintf s "%s - before update : %a = %a %% %a\n" name Fd.fprint z Fd.fprint x Fd.fprint y);

    if not (Fcl_stak.get zero_removed) then begin
      begin match Fd.value y with
	Unk ya -> Fd.refine y (Fcl_domain.remove 0 (Attr.dom ya))
      | Val 0 -> Fcl_stak.fail (name ^ ": division by zero")
      | _ -> () end;
      Fcl_stak.set zero_removed true end;
    (* 0 does not belong to dom(y) *)
    let rec loop bounds =
      match Fd.value x, Fd.value y with
	Val a, Val b -> Fd.unify z (a mod b); true
      | Val 0, _ -> Fd.unify z 0; true
      | _x_val, _y_val ->
	  let (a, b) = Fd.min_max x and (c, d) = Fd.min_max y in
	  if c = d && b - a < abs c then (* y known *)
	    hole a b (abs c)
	  else begin    
	    let (z_min, z_max) = min_max_mod_inter a b c d in
	    Fcl_debug.call 'a' (fun s -> fprintf s "z_min=%d z_max=%d " z_min z_max);
	    Fd.refine_low_up z z_min z_max end;
	  
	  (* x = y*(x/y) + z *)
	  let (x_min, x_max) = min_max_of_xexp () in
	  Fcl_debug.call 'a' (fun s -> fprintf s "x_min=%d x_max=%d " x_min x_max);
	  Fd.refine_low_up x x_min x_max;
	  
	  (* y = (x-z) / (x/y) *)
	  let (y_min, y_max) = min_max_of_yexp () in
	  Fcl_debug.call 'a' (fun s -> fprintf s "y_min=%d y_max=%d\n" y_min y_max);
	  Fd.refine_low_up y y_min y_max;

	  let new_bounds = compute_bounds () in
	  if bounds <> new_bounds then loop new_bounds else false in
    (* function hole raises Exit when the constraint is satisfied *)
    let r = try loop (compute_bounds ()) with Exit -> true in
    
    Fcl_debug.call 'a' (fun s -> fprintf s "%s - after update : %a = %a %% %a\n" name Fd.fprint z Fd.fprint x Fd.fprint y);
    r in

  C.create ~name ~fprint update delay



let expn_int x n =
  if n < 0 then Fcl_debug.fatal_error "Arith.expn_int: negative exponent" else
  let rec loop = function
      0 -> 1
    | n ->
	let n2 = n / 2 in
	let xn2 = loop n2 in
	let xn = xn2 * xn2 in
	if n mod 2 = 0 then xn else xn * x in
  loop n

let min_max_expn_inter a b n =
  assert (a <= b);
  if n < 0 then
    Fcl_debug.fatal_error "Nonlinear.min_max_expn_inter: negative exponent"
  else if n = 0 then (1, 1) else
  let an = expn_int a n and bn = expn_int b n in
  if n mod 2 = 0 then
    if a >= 0 then (an, bn)
    else if b <= 0 then (bn, an)
    else if an <= bn then (0, bn) else (0, an)
  else (an , bn)

let min_max_of_expn x n =
  assert (n > 1);
  match Fd.value x with
    Unk xa ->
      let min_xa = Attr.min xa and max_xa = Attr.max xa in
      let min_xan = expn_int min_xa n and max_xan = expn_int max_xa n in
      if n mod 2 = 0 then  (* even exponent *)
	if min_xa >= 0 then (min_xan, max_xan) (* positive domain *)
	else if max_xa <= 0 then (max_xan, min_xan) (* negative domain *)
	else
	  let domx = Attr.dom xa in
	  let min_neg = Fcl_domain.greatest_leq domx 0
	  and min_pos = Fcl_domain.smallest_geq domx 0 in
	  let minn =
	    if -min_neg < min_pos then expn_int min_neg n
	    else expn_int min_pos n
	  and maxn = max min_xan max_xan in
	  (minn, maxn)
  (* L'exposant est impair *)
      else (min_xan, max_xan)
  | Val c -> let cn = expn_int c n in (cn, cn)

let nth_root upper z n =
  (* Root of a negative number returns nan, so computation is done
     with the absolute value *)
  let az = abs z and sz = sign z in
  let znth = truncate (float az ** (1. /. float n)) in
  if expn_int znth n = az then sz * znth else
  (* float computation may return z^(1/n)-e, rounded by truncate to the
     preceding integer of the actual root *)
  let znmore = znth + 1 in
  if expn_int znmore n = az then sz * znmore else
  if upper then
    if z >= 0 then znmore else (0 - znth)
  else
    if z >= 0 then znth else (0 - znmore)
  
let ( **/+) = nth_root true
let ( **/-) = nth_root false

let min_max_of_nth_root z n =
  (Fd.min z **/+ n, Fd.max z **/- n)

let int_root z n =
  let az = abs z and sz = sign z in
  let znth = truncate (float az ** (1. /. float n)) in
  if expn_int znth n = az then sz * znth else
  let znmore = znth + 1 in
  if expn_int znmore n = az then sz * znmore else raise Not_found

(* z = x^n *)
let expn z x n =
  let even = n mod 2 = 0
  and compute_bounds () = (Fd.min_max z, Fd.min_max x) in
  let name = "expn" in

  let delay c =
    delay [Fd.on_min; Fd.on_max] z c;
    delay [Fd.on_min; Fd.on_max] x c

  and fprint c =
    Printf.fprintf c "%a = %a ^ %d" Fd.fprint z Fd.fprint x n;
    flush c

  and update _ =
    Fcl_debug.call 'a' (fun s -> fprintf s "%s - before update : %a = %a ^ %d\n" name Fd.fprint z Fd.fprint x n);

    let rec loop bounds =
      match Fd.value x, Fd.value z with
	Val a, _ -> Fd.unify z (expn_int a n); true
      | Unk xa, Val c -> begin
	  try
	    let root = int_root c n in
	    if even then
	      Fd.refine x
		(Fcl_domain.intersection
		   (Fcl_domain.create [-root; root]) (Attr.dom xa))
	    else Fd.subst x root;
	    true
	  with Not_found -> Fcl_stak.fail name end
      | Unk xa, Unk za ->
	  let (z_min, z_max) = min_max_of_expn x n in
	  Fcl_debug.call 'a' (fun s -> fprintf s "%s - Unk xa, Unk za : z_min=%d z_max=%d " name z_min z_max);	
	  Fd.refine z
	    (Fcl_domain.remove_low_up z_min z_max (Attr.dom za));
	  let (x_min, x_max) = min_max_of_nth_root z n in
	  Fcl_debug.call 'a' (fun s -> if even then fprintf s "%s (even) - Unk xa, za : x_neg=[%d,%d] x_pos=[%d,%d]\n" name (-x_max) (-x_min) x_min x_max else fprintf s "%s (odd) - Unk xa, Unk za : x_min=%d x_max=%d\n" name x_min x_max);
	  if even then
	    (* [-x_max_pos, -x_min_pos] U [x_min_pos, x_max_pos] *)
	    let d =
	      Fcl_domain.remove_closed_inter (-x_min+1) (x_min-1)
		(Fcl_domain.remove_low_up (-x_max) x_max (Attr.dom xa)) in
	    Fd.refine x d
	  else
	    (* [x_min, x_max] *)
	    Fd.refine x
	      (Fcl_domain.remove_low_up x_min x_max (Attr.dom xa));

	  let new_bounds = compute_bounds () in
	  if bounds <> new_bounds then loop new_bounds else false in
    let r = loop (compute_bounds ()) in
    
    Fcl_debug.call 'a' (fun s -> fprintf s "expn - after update : %a = %a ^ %d\n" Fd.fprint z Fd.fprint x n);

    r in

C.create ~name ~fprint update delay

let aux2 bounds x y =
  let (a, b) = Fd.min_max x and (c, d) = Fd.min_max y in
  let (z_min, z_max) = bounds a b c d in
  Fd.interval z_min z_max

let monome_aux = aux2 min_max_mult_inter
let division_aux = aux2 min_max_div_inter
let modulo_aux = aux2 min_max_mod_inter

let absolute_aux x =
  let (z_min, z_max) = min_max_abs_for_abs x in
  Fd.interval z_min z_max

let expn_aux x n =
  assert (n > 0);
  if n = 1 then x else
  let (mini, maxi) = min_max_of_expn x n in
  Fd.interval mini maxi