File: DLConceptTaxonomy.cpp

package info (click to toggle)
fact%2B%2B 1.6.5~dfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, forky, sid, trixie
  • size: 4,496 kB
  • sloc: cpp: 28,000; java: 22,674; xml: 3,268; makefile: 102; ansic: 61; sh: 3
file content (543 lines) | stat: -rw-r--r-- 15,822 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
/* This file is part of the FaCT++ DL reasoner
Copyright (C) 2003-2015 Dmitry Tsarkov and The University of Manchester
Copyright (C) 2015-2016 Dmitry Tsarkov

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
*/

/*******************************************************\
|* Implementation of taxonomy building for the FaCT++  *|
\*******************************************************/

#include <fstream>

#include "Reasoner.h"
#include "DLConceptTaxonomy.h"
#include "globaldef.h"
#include "logging.h"

#include <queue>

/********************************************************\
|* 			Implementation of class Taxonomy			*|
\********************************************************/

bool DLConceptTaxonomy :: testSub ( const TConcept* p, const TConcept* q )
{
	fpp_assert ( p != NULL );
	fpp_assert ( q != NULL );

//	std::cout << "Testing sub " << p->getName() << " [= " << q->getName() << std::endl;
	if ( q->isSingleton()		// singleton on the RHS is useless iff...
		 && q->isPrimitive()	// it is primitive
		 && !q->isNominal() )	// nominals should be classified as usual concepts
		return false;

	if ( LLM.isWritable(llTaxTrying) )
		LL << "\nTAX: trying '" << p->getName() << "' [= '" << q->getName() << "'... ";

	if ( tBox.testSortedNonSubsumption ( p, q ) )
	{
		if ( LLM.isWritable(llTaxTrying) )
			LL << "NOT holds (sorted result)";

		++nSortedNegative;
		return false;
	}

	if ( isNotInModule(q->getEntity()) )
	{
		if ( LLM.isWritable(llTaxTrying) )
			LL << "NOT holds (module result)";

		++nModuleNegative;
		return false;
	}

	switch ( tBox.testCachedNonSubsumption ( p, q ) )
	{
	case csValid:	// cached result: satisfiable => non-subsumption
		if ( LLM.isWritable(llTaxTrying) )
			LL << "NOT holds (cached result)";

		++nCachedNegative;
		return false;

	case csInvalid:	// cached result: unsatisfiable => subsumption holds
		if ( LLM.isWritable(llTaxTrying) )
			LL << "holds (cached result)";

		++nCachedPositive;
		return true;

	default:		// need extra tests
		if ( LLM.isWritable(llTaxTrying) )
			LL << "wasted cache test";

		break;
	}

	return testSubTBox ( p, q );
}

bool
DLConceptTaxonomy :: isNotInModule ( const TNamedEntity* entity ) const
{
	if ( upDirection )	// bottom-up phase
		return false;
	const TSignature* sig = sigStack.top();
	if ( sig && entity && !sig->contains(entity) )
		return true;
	return false;
}

TaxonomyCreator::KnownSubsumers*
DLConceptTaxonomy :: buildKnownSubsumers ( ClassifiableEntry* ce )
{
	return TaxonomyCreator::buildKnownSubsumers(ce);
}

/// prepare signature for given entry
const TSignature*
DLConceptTaxonomy :: buildSignature ( ClassifiableEntry* p )
{
	if ( tBox.pName2Sig == NULL )
		return NULL;
	if ( p->getEntity() == NULL )
		return NULL;
	TBox::NameSigMap::iterator found = tBox.pName2Sig->find(p->getEntity());
	if ( found == tBox.pName2Sig->end() )
		return NULL;
	return found->second;
}

void DLConceptTaxonomy :: print ( std::ostream& o ) const
{
	o << "Totally " << nTries << " subsumption tests was made\nAmong them ";

	unsigned long n = ( nTries ? nTries : 1 );

	o << nPositives << " (" << (unsigned long)(nPositives*100/n) << "%) successfull\n";
	o << "Besides that " << nCachedPositive << " successfull and " << nCachedNegative
	  << " unsuccessfull subsumption tests were cached\n";
	if ( nSortedNegative )
		o << "Sorted reasoning deals with " << nSortedNegative << " non-subsumptions\n";
	if ( nModuleNegative )
		o << "Modular reasoning deals with " << nModuleNegative << " non-subsumptions\n";
	o << "There were made " << nSearchCalls << " search calls\nThere were made " << nSubCalls
	  << " Sub calls, of which " << nNonTrivialSubCalls << " non-trivial\n";
	o << "Current efficiency (wrt Brute-force) is " << nEntries*(nEntries-1)/n << "\n";

	TaxonomyCreator::print(o);
}

// Baader procedures
void
DLConceptTaxonomy :: searchBaader ( TaxonomyVertex* cur )
{
	// label 'visited'
	pTax->setVisited(cur);

	++nSearchCalls;
	bool noPosSucc = true;

	// check if there are positive successors; use DFS on them.
	for ( TaxonomyVertex::iterator p = cur->begin(upDirection), p_end = cur->end(upDirection); p != p_end; ++p )
		if ( enhancedSubs(*p) )
		{
			if ( !pTax->isVisited(*p) )
				searchBaader(*p);

			noPosSucc = false;
		}

	// in case current node is unchecked (no BOTTOM node) -- check it explicitely
	if ( !isValued(cur) )
		setValue ( cur, testSubsumption(cur) );

	// mark labelled leaf node as a parent (self check for incremental)
	if ( noPosSucc && cur->getValue() && cur != pTax->getCurrent() )
		pTax->getCurrent()->addNeighbour ( !upDirection, cur );
}

bool
DLConceptTaxonomy :: enhancedSubs1 ( TaxonomyVertex* cur )
{
	++nNonTrivialSubCalls;

	// need to be valued -- check all parents
	// propagate false
	for ( TaxonomyVertex::iterator p = cur->begin(!upDirection), p_end = cur->end(!upDirection); p != p_end; ++p )
		if ( !enhancedSubs(*p) )
			return false;

	// all subsumptions holds -- test current for subsumption
	return testSubsumption(cur);
}

bool
DLConceptTaxonomy :: testSubsumption ( TaxonomyVertex* cur )
{
	const TConcept* testC = static_cast<const TConcept*>(cur->getPrimer());
	if ( upDirection )
		return testSub ( testC, curConcept() );
	else
		return testSub ( curConcept(), testC );
}

void
DLConceptTaxonomy :: propagateOneCommon ( TaxonomyVertex* node )
{
	// checked if node already was visited this session
	if ( pTax->isVisited(node) )
		return;

	// mark node visited
	pTax->setVisited(node);
	node->setCommon();
	if ( node->correctCommon(nCommon) )
		Common.push_back(node);

	// mark all children
	for ( TaxonomyVertex::iterator p = node->begin(/*upDirection=*/false), p_end = node->end(/*upDirection=*/false); p != p_end; ++p )
		propagateOneCommon(*p);
}

bool DLConceptTaxonomy :: propagateUp ( void )
{
	// including node always have some parents (TOP at least)
	TaxonomyVertex* Current = pTax->getCurrent();
	TaxonomyVertex::iterator p = Current->begin(/*upDirection=*/true), p_end = Current->end(/*upDirection=*/true);
	fpp_assert ( p != p_end );	// there is at least one parent (TOP)

	TaxVertexVec aux;	// aux set for the verteces in ...
	nCommon = 1;	// number of common parents
	clearCommon();

	// define possible successors of the node
	propagateOneCommon(*p);
	pTax->clearVisited();

	for ( ++p; p != p_end; ++p )
	{
		if ( (*p)->noNeighbours(/*upDirection=*/false) )
			return true;
		if ( Common.empty() )
			return true;

		++nCommon;
		// now Aux contain data from previous run
		aux.swap(Common);
		Common.clear();
		propagateOneCommon(*p);
		pTax->clearVisited();

		// clear all non-common nodes (visited on a previous run)
		for ( TaxVertexVec::iterator q = aux.begin(), q_end = aux.end(); q < q_end; ++q )
			(*q)->correctCommon(nCommon);
	}

	return false;
}

/// check if no BU classification is required as C=TOP
bool
DLConceptTaxonomy :: isEqualToTop ( void )
{
	// check this up-front to avoid Sorted check's flaw wrt equals-to-top
	const modelCacheInterface* cache = tBox.initCache ( curConcept(), /*sub=*/true );
	if ( cache->getState() != csInvalid )
		return false;
	// here concept = TOP
	pTax->getCurrent()->addNeighbour ( /*upDirection=*/false, pTax->getTopVertex() );
	return true;
}

/// @return true iff curEntry is classified as a synonym
bool
DLConceptTaxonomy :: classifySynonym ( void )
{
	if ( TaxonomyCreator::classifySynonym() )
		return true;

	if ( curConcept()->isSingleton() )
	{
		TIndividual* curI = (TIndividual*)const_cast<TConcept*>(curConcept());

		if ( unlikely(tBox.isBlockedInd(curI)) )
		{	// check whether current entry is the same as another individual
			TIndividual* syn = tBox.getBlockingInd(curI);
			fpp_assert ( syn->getTaxVertex() != NULL );

 			if ( tBox.isBlockingDet(curI) )
			{	// deterministic merge => curI = syn
 				pTax->addCurrentToSynonym(syn->getTaxVertex());
				return true;
			}
			else	// non-det merge: check whether it is the same
			{
				if ( LLM.isWritable(llTaxTrying) )
					LL << "\nTAX: trying '" << curI->getName() << "' = '" << syn->getName() << "'... ";
				if ( testSubTBox ( curI, syn ) )	// they are actually the same
				{
					pTax->addCurrentToSynonym(syn->getTaxVertex());
					return true;
				}
			}
		}
	}

	return false;
}

void 		/// fill candidates
DLConceptTaxonomy :: fillCandidates ( TaxonomyVertex* cur )
{
//	std::cout << "fill candidates: " << cur->getPrimer()->getName() << std::endl;
	if ( isValued(cur) )
	{
		if ( getValue(cur) )	// positive value -- nothing to do
			return;
	}
	else
		candidates.insert(cur);

	for ( TaxonomyVertex::iterator p = cur->begin(true), p_end = cur->end(true); p != p_end; ++p )
		fillCandidates(*p);
}

void
DLConceptTaxonomy :: reclassify ( const std::set<const TNamedEntity*>& plus, const std::set<const TNamedEntity*>& minus )
{
	MPlus = plus;
	MMinus = minus;
	pTax->deFinalise();

	// fill in an order to
	std::queue<TaxonomyVertex*> queue;
	std::vector<const ClassifiableEntry*> toProcess;
	queue.push(pTax->getTopVertex());
	while ( !queue.empty() )
	{
		TaxonomyVertex* cur = queue.front();
		queue.pop();
		if ( pTax->isVisited(cur) )
			continue;
		pTax->setVisited(cur);
		const ClassifiableEntry* entry = cur->getPrimer();
		const TNamedEntity* entity = entry->getEntity();
		if ( MPlus.find(entity) != MPlus.end() || MMinus.find(entity) != MMinus.end() )
			toProcess.push_back(entry);
		for ( TaxonomyVertex::iterator p = cur->begin(/*upDirection=*/false), p_end = cur->end(/*upDirection=*/false); p != p_end; ++p )
			queue.push(*p);
	}
	pTax->clearVisited();
//	std::cout << "Add/Del names Taxonomy:\n";
//	pTax->print(std::cout);

	for ( std::vector<const ClassifiableEntry*>::iterator p = toProcess.begin(), p_end = toProcess.end(); p != p_end; ++p )
	{
		TaxonomyVertex* node = (*p)->getTaxVertex();
		const TNamedEntity* entity = (*p)->getEntity();
		std::cout << "Reclassify " << entity->getName() << " (" << (MPlus.count(entity) > 0 ?"Added":"") << (MMinus.count(entity) > 0 ?" Removed":"") << ")";

		TsProcTimer timer;
		timer.Start();
		reclassify ( node, (*tBox.pName2Sig)[entity] );
		timer.Stop();
		std::cout << "; reclassification time: " << timer << std::endl;
//		tax->print(std::cout);
//		std::cout.flush();
	}

	pTax->finalise();
//	print(std::cout);
//	std::cout.flush();
}

void
DLConceptTaxonomy :: reclassify ( TaxonomyVertex* node, const TSignature* s )
{
	upDirection = false;
	sigStack.push(s);
	curEntry = node->getPrimer();
	TaxonomyVertex* oldCur = pTax->getCurrent();
	pTax->setCurrent(node);

	// FIXME!! check the unsatisfiability later

	bool added = MPlus.count(curEntry->getEntity()) > 0;
	bool removed = MMinus.count(curEntry->getEntity()) > 0;
	fpp_assert ( added || removed );
	typedef std::vector<TaxonomyVertex*> TVArray;
	clearLabels();

	setValue ( pTax->getTopVertex(), true );
	if ( node->noNeighbours(true) )
		node->addNeighbour(true, pTax->getTopVertex());

	// we use candidates set if nothing was added (so no need to look further from current subs)
	useCandidates = !added;
	candidates.clear();
	if ( removed )	// re-check all parents
	{
		TVArray pos, neg;
		for ( TaxonomyVertex::iterator p = node->begin(true), p_end = node->end(true); p != p_end; ++p )
		{
			if ( isValued(*p) && getValue(*p) )
				continue;
			bool sub = testSubsumption(*p);
			if ( sub )
			{
				pos.push_back(*p);
				propagateTrueUp(*p);
			}
			else
			{
				setValue ( *p, sub );
				neg.push_back(*p);
			}
		}
		node->removeLinks(true);
//		for ( TVArray::iterator q = pos.begin(), q_end = pos.end(); q != q_end; ++q )
//			node->addNeighbour(true, *q);
		if ( useCandidates )
			for ( TVArray::iterator q = neg.begin(), q_end = neg.end(); q != q_end; ++q )
				fillCandidates(*q);
	}
	else	// all parents are there
	{
		for ( TaxonomyVertex::iterator p = node->begin(true), p_end = node->end(true); p != p_end; ++p )
			propagateTrueUp(*p);
		node->removeLinks(true);
	}

	// FIXME!! for now. later check the equivalence etc
	setValue ( node, true );
	// the landscape is prepared
	searchBaader(pTax->getTopVertex());
	node->incorporate();
	clearLabels();
	sigStack.pop();
	pTax->setCurrent(oldCur);
}

/********************************************************\
|* 			Implementation of class TBox				*|
\********************************************************/

void TBox :: createTaxonomy ( bool needIndividual )
{
	bool needConcept = !needIndividual;

	// if there were SAT queries before -- the query (or other) concepts are there. Delete it
	clearQueryConcept();

	// here we sure that ontology is consistent
	// FIXME!! distinguish later between the 1st run and the following runs
	if ( pTax == NULL )	// 1st run
		initTaxonomy();

	DLHeap.setSubOrder();	// init priorities in order to do subsumption tests
	pTaxCreator->setBottomUp(GCIs);
	needConcept |= needIndividual;	// together with concepts
//	else	// not a first run
//		return;	// FIXME!! now we don't perform staged reasoning, so everything is done
/*
	{
		fpp_assert ( needIndividual );
		pTax->deFinalise();
	}
*/
	if ( verboseOutput )
		std::cerr << "Processing query...";

	TsProcTimer locTimer;
	locTimer.Start();

	// calculate number of items to be classified
	unsigned int nItems = 0;

	// fills collections
	arrayCD.clear();
	arrayNoCD.clear();
	arrayNP.clear();

//	if ( needConcept )
		nItems += fillArrays ( c_begin(), c_end() );
//	if ( needIndividual || nNominalReferences > 0 )	// TODO ORE
		nItems += fillArrays ( i_begin(), i_end() );

	// taxonomy progress
	if ( pMonitor )
	{
		pMonitor->setClassificationStarted(nItems);
		pTaxCreator->setProgressIndicator(pMonitor);
	}

//	sort ( arrayCD.begin(), arrayCD.end(), TSDepthCompare() );
	classifyConcepts ( arrayCD, true, "completely defined" );
//	sort ( arrayNoCD.begin(), arrayNoCD.end(), TSDepthCompare() );
	classifyConcepts ( arrayNoCD, false, "regular" );
//	sort ( arrayNP.begin(), arrayNP.end(), TSDepthCompare() );
	classifyConcepts ( arrayNP, false, "non-primitive" );

	if ( pMonitor )
	{
		pMonitor->setFinished();
		setProgressMonitor(NULL);	// no need of PM after classification done
		pTaxCreator->setProgressIndicator(NULL);
	}
	pTax->finalise();

	locTimer.Stop();
	if ( verboseOutput )
		std::cerr << " done in " << locTimer << " seconds\n";

	if ( needConcept && Status < kbClassified )
		Status = kbClassified;
	if ( needIndividual )
		Status = kbRealised;

	if ( verboseOutput/* && needIndividual*/ )
	{
		std::ofstream of("Taxonomy.log");
		pTaxCreator->print(of);
	}
}

void
TBox :: classifyConcepts ( const ConceptVector& collection, bool curCompletelyDefined, const char* type )
{
	// set CD for taxonomy
	pTaxCreator->setCompletelyDefined(curCompletelyDefined);

	if ( LLM.isWritable(llStartCfyConcepts) )
		LL << "\n\n---Start classifying " << type << " concepts";

	unsigned int n = 0;

	for ( ConceptVector::const_iterator q = collection.begin(), q_end = collection.end(); q < q_end; ++q )
		// check if concept is already classified
		if ( !isCancelled() && !(*q)->isClassified () /*&& (*q)->isClassifiable(curCompletelyDefined)*/ )
		{
			classifyEntry(*q);	// need to classify concept
			if ( (*q)->isClassified() )
				++n;
		}

	if ( LLM.isWritable(llStartCfyConcepts) )
		LL << "\n---Done: " << n << " " << type << " concepts classified";
}