1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
|
/* This file is part of the FaCT++ DL reasoner
Copyright (C) 2003-2015 Dmitry Tsarkov and The University of Manchester
Copyright (C) 2015-2016 Dmitry Tsarkov
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "dlTBox.h"
//-----------------------------------------------------------------------------
//-- Subsumption axioms and support
//-----------------------------------------------------------------------------
// return true if undefined concept found
void TBox :: addSubsumeAxiom ( DLTree* sub, DLTree* sup )
{
// for C [= C: nothing to do
if ( equalTrees ( sub, sup ) )
{
deleteTree(sub);
deleteTree(sup);
return;
}
// try to apply C [= CN
if ( isCN(sup) )
{
sup = applyAxiomCToCN ( sub, sup );
if ( sup == NULL )
return;
}
// try to apply CN [= C
if ( isCN(sub) )
{
sub = applyAxiomCNToC ( sub, sup );
if ( sub == NULL )
return;
}
// check if an axiom looks like T [= \AR.C
if ( axiomToRangeDomain ( sub, sup ) )
;
else // general axiom
processGCI ( sub, sup );
}
/// tries to apply axiom D [= CN; @return NULL if applicable or new CN
DLTree*
TBox :: applyAxiomCToCN ( DLTree* D, DLTree* CN )
{
TConcept* C = resolveSynonym(getCI(CN));
if ( C == NULL ) // not applicable
return CN;
// D [= BOTTOM: transform later as GCI
if ( C == pBottom )
{
deleteTree(CN);
return createBottom();
}
// D [= TOP: nothing to do
if ( C == pTop )
deleteTree(D);
// check for D [= CN with CN [= D already defined
// don't do this for D is a DN and C is an individual as cycle detection will do it better
else if ( equalTrees ( C->Description, D ) && !( C->isSingleton() && isName(D) ) )
deleteTree ( makeNonPrimitive(C,D) );
else // n/a
return CN;
// success
deleteTree(CN);
return NULL;
}
/// tries to apply axiom CN [= D; @return NULL if applicable or new CN
DLTree*
TBox :: applyAxiomCNToC ( DLTree* CN, DLTree* D )
{
TConcept* C = resolveSynonym(getCI(CN));
if ( C == NULL ) // not applicable
return CN;
// TOP [= D: transform later as GCI
if ( C == pTop )
{
deleteTree(CN);
return createTop();
}
// BOTTOM [= D: nothing to do
if ( C == pBottom )
deleteTree(D);
else if ( C->isPrimitive() )
C->addDesc(D);
else // C is defined
addSubsumeForDefined ( C, D );
// success
deleteTree(CN);
return NULL;
}
/// add an axiom CN [= E for defined CN (CN=D already in base)
void
TBox :: addSubsumeForDefined ( TConcept* C, DLTree* E )
{
// if E is a syntactic sub-class of D, then nothing to do
if ( isSubTree ( E, C->Description ) )
{
deleteTree(E);
return;
}
// try to see whether C contains a reference to itself at the top level
if ( C->hasSelfInDesc() )
{
// remember the old description value
DLTree* D = clone(C->Description);
// remove C from the description
C->removeSelfFromDescription();
// the trees should differ here
fpp_assert ( !equalTrees ( D, C->Description ) );
// note that we don't know exact semantics of C for now;
// we need to split it's definition and work via GCIs
makeDefinitionPrimitive ( C, E, D );
}
else // here we have the definition of C = D, and subsumption C [= E
{
if ( 1 ) // for now: it's not clear of what's going wrong
processGCI ( getTree(C), E );
else // here we leave the definition of C = D, and delay the processing of C [= E
{
ConceptDefMap::iterator p = ExtraConceptDefs.find(C);
if ( p == ExtraConceptDefs.end() ) // no such entry
ExtraConceptDefs[C] = E; // save C [= E
else // we have C [= X; change to C [= (X and E)
p->second = createSNFAnd ( p->second, E );
}
}
}
bool TBox :: axiomToRangeDomain ( DLTree* sub, DLTree* sup )
{
// applicability check for T [= A R.C
if ( sub->Element() == TOP && sup->Element () == FORALL )
{
resolveRole(sup->Left())->setRange(clone(sup->Right()));
// free unused memory
deleteTree(sub);
deleteTree(sup);
return true;
}
// applicability check for E R.T [= D
if ( sub->Element() == NOT && sub->Left()->Element() == FORALL && sub->Left()->Right()->Element() == BOTTOM )
{
resolveRole(sub->Left()->Left())->setDomain(sup);
deleteTree(sub);
return true;
}
return false;
}
//-----------------------------------------------------------------------------
//-- Equality axioms and support
//-----------------------------------------------------------------------------
/// process the definition LHS = RHS
void
TBox :: addEqualityAxiom ( DLTree* lhs, DLTree* rhs )
{
// check whether LHS is a named concept
TConcept* C = resolveSynonym(getCI(lhs));
bool isNamedLHS = ( C && C != pTop && C != pBottom );
// check whether RHS is a named concept
TConcept* D = resolveSynonym(getCI(rhs));
bool isNamedRHS = ( D && D != pTop && D != pBottom );
// try to make a definition C = RHS for C with no definition
if ( isNamedLHS && addNonprimitiveDefinition ( C, rhs ) )
{
deleteTree(lhs);
return;
}
// try to make a definition RHS = LHS for RHS = C with no definition
if ( isNamedRHS && addNonprimitiveDefinition ( D, lhs ) )
{
deleteTree(rhs);
return;
}
// try to make a definition C = RHS for C [= D
if ( isNamedLHS && switchToNonprimitive ( C, rhs ) )
{
deleteTree(lhs);
return;
}
// try to make a definition RHS = LHS for RHS = C with C [= D
if ( isNamedRHS && switchToNonprimitive ( D, lhs ) )
{
deleteTree(rhs);
return;
}
// fail to make a concept definition; separate the definition
addSubsumeAxiom ( clone(lhs), clone(rhs) );
addSubsumeAxiom ( rhs, lhs );
}
/// tries to add C = RHS for the concept C; @return true if OK
bool
TBox :: addNonprimitiveDefinition ( TConcept* C, DLTree* rhs )
{
// check whether the case is C=D for a (concept-like) D
TConcept* D = getCI(rhs);
// nothing to do for the case C := D for named concepts C,D with D = C already
if ( D && resolveSynonym(D) == C )
{
deleteTree(rhs);
return true;
}
// can't have C=D where C is a nominal and D is a concept
if ( C->isSingleton() && D != NULL && !D->isSingleton() )
return false;
// check the case whether C=RHS or C [= \top
if ( C->canInitNonPrim(rhs) )
{
// delete return value in case of (possibly) duplicated description
deleteTree ( makeNonPrimitive ( C, rhs ) );
return true;
}
// can't make definition
return false;
}
/// tries to add C = RHS for the concept C [= X; @return true if OK
bool
TBox :: switchToNonprimitive ( TConcept* C, DLTree* rhs )
{
// make sure that we avoid making an individual equals to smth-else
TConcept* D = resolveSynonym(getCI(rhs));
if ( C->isSingleton() && D && !D->isSingleton() )
return false;
// check whether we process C=D where C is defined as C[=E
if ( alwaysPreferEquals && C->isPrimitive() ) // change C to C=... with additional GCI C[=x
{
addSubsumeForDefined ( C, makeNonPrimitive(C,rhs) );
return true;
}
return false;
}
//-----------------------------------------------------------------------------
//-- N-ary concept axioms
//-----------------------------------------------------------------------------
void TBox :: processDisjointC ( ea_iterator beg, ea_iterator end )
{
ExpressionArray prim, rest;
for ( ; beg < end; ++beg )
if ( isName(*beg) &&
static_cast<const TConcept*>((*beg)->Element().getNE())->isPrimitive() )
prim.push_back(*beg);
else
rest.push_back(*beg);
// both primitive concept and others are in DISJ statement
if ( !prim.empty() && !rest.empty() )
{
DLTree* nrest = buildDisjAux ( rest.begin(), rest.end() );
for ( ea_iterator q = prim.begin(), q_end = prim.end(); q < q_end; ++q )
addSubsumeAxiom ( clone(*q), clone(nrest) );
deleteTree(nrest);
}
// no primitive concepts between DJ elements
if ( !rest.empty() )
processDisjoint ( rest.begin(), rest.end() );
// all non-PC are done; prim is non-empty
// FIXME!! do it in more optimal way later
if ( !prim.empty() )
processDisjoint ( prim.begin(), prim.end() );
}
void TBox :: processEquivalentC ( ea_iterator beg, ea_iterator end )
{
for ( ; beg+1 < end; ++beg )
addEqualityAxiom ( *beg, clone(*(beg+1)) );
// now beg+1 == end, so beg points to the last element
deleteTree(*beg);
}
//-----------------------------------------------------------------------------
//-- N-ary individual axioms
//-----------------------------------------------------------------------------
void TBox :: processDifferent ( ea_iterator beg, ea_iterator end )
{
SingletonVector acc;
for ( ; beg < end; ++beg )
if ( isIndividual(*beg) ) // only nominals in DIFFERENT command
{
acc.push_back(toIndividual((*beg)->Element().getNE()));
deleteTree(*beg);
}
else
throw EFaCTPlusPlus("Only individuals allowed in processDifferent()");
// register vector of disjoint nominals in proper place
if ( acc.size() > 1 )
Different.push_back(acc);
}
void TBox :: processSame ( ea_iterator beg, ea_iterator end )
{
if ( beg == end )
return;
if ( !isIndividual(*beg) ) // only nominals in SAME command
throw EFaCTPlusPlus("Only individuals allowed in processSame()");
for ( ; beg+1 < end; ++beg )
{
if ( !isIndividual(*(beg+1)) )
throw EFaCTPlusPlus("Only individuals allowed in processSame()");
addEqualityAxiom ( *beg, clone(*(beg+1)) );
}
// now beg+1 == end, so beg points to the last element
deleteTree(*beg);
}
//-----------------------------------------------------------------------------
//-- N-ary role axioms
//-----------------------------------------------------------------------------
void TBox :: processDisjointR ( ea_iterator beg, ea_iterator end )
{
if ( beg == end )
throw EFaCTPlusPlus("Empty disjoint role axiom");
ea_iterator p, q;
// check that all id's are correct role names
for ( p = beg; p < end; ++p )
if ( isTopRole(*p) )
throw EFaCTPlusPlus("Universal role in the disjoint roles axiom");
RoleMaster* RM = getRM(resolveRole(*beg));
// make a disjoint roles
for ( p = beg; p < end; ++p )
{
TRole* r = resolveRole(*p);
// FIXME: this could be done more optimal...
for ( q = p+1; q < end; ++q )
RM->addDisjointRoles ( r, resolveRole(*q) );
deleteTree(*p);
}
}
void TBox :: processEquivalentR ( ea_iterator beg, ea_iterator end )
{
if ( beg != end )
{
RoleMaster& RM = *getRM(resolveRole(*beg));
for ( ; beg != end-1; ++beg )
{
RM.addRoleSynonym ( resolveRole(*beg), resolveRole(*(beg+1)) );
deleteTree(*beg);
}
deleteTree(*beg);
}
}
|