File: Kernel.cpp

package info (click to toggle)
fact%2B%2B 1.6.5~dfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, forky, sid, trixie
  • size: 4,496 kB
  • sloc: cpp: 28,000; java: 22,674; xml: 3,268; makefile: 102; ansic: 61; sh: 3
file content (890 lines) | stat: -rw-r--r-- 26,694 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
/* This file is part of the FaCT++ DL reasoner
Copyright (C) 2003-2015 Dmitry Tsarkov and The University of Manchester
Copyright (C) 2015-2016 Dmitry Tsarkov

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
*/

#include "Kernel.h"
#include "tOntologyLoader.h"
#include "tOntologyPrinterLISP.h"
#include "AtomicDecomposer.h"
#include "OntologyBasedModularizer.h"
#include "eFPPSaveLoad.h"
#include "SaveLoadManager.h"

const char* ReasoningKernel :: Version = "1.6.5";
const char* ReasoningKernel :: SupportedDL = "SROIQ(D)";
const char* ReasoningKernel :: Copyright =
	"Copyright (C) Dmitry Tsarkov, 2002-2016";
const char* ReasoningKernel :: ReleaseDate = "31 December 2016";

// print the FaCT++ information only once
static bool KernelFirstRun = true;

// debug related individual/values switch
//#define FPP_DEBUG_PRINT_RELATED_PROGRESS

ReasoningKernel :: ReasoningKernel ( void )
	: pTBox (NULL)
	, pET(NULL)
	, KE(NULL)
	, AD(NULL)
	, ModSyn(NULL)
	, ModSynCount(NULL)
	, ModSem(NULL)
	, JNICache(NULL)
	, pSLManager(NULL)
	, pMonitor(NULL)
	, OpTimeout(0)
	, verboseOutput(false)
	, useUndefinedNames(true)
	, cachedQuery(NULL)
	, cachedQueryTree(NULL)
	, reasoningFailed(false)
	, NeedTracing(false)
	, ignoreExprCache(false)
	, useIncrementalReasoning(false)
	, dumpOntology(false)
{
	// Intro
	if ( KernelFirstRun )
	{
		std::cerr << "FaCT++.Kernel: Reasoner for the " << SupportedDL << " Description Logic, " << 8*sizeof(void*) << "-bit\n"
				  << Copyright << ". Version " << Version << " (" << ReleaseDate << ")\n";
		KernelFirstRun = false;
	}

	initCacheAndFlags();

	// init option set (fill with options):
	if ( initOptions () )
		throw EFaCTPlusPlus("FaCT++ kernel: Cannot init options");
}

/// d'tor
ReasoningKernel :: ~ReasoningKernel ( void )
{
	clearTBox();
	deleteTree(cachedQueryTree);
	delete pMonitor;
	delete pSLManager;
	for ( NameSigMap::iterator p = Name2Sig.begin(), p_end = Name2Sig.end(); p != p_end; ++p )
		delete p->second;
}

/// clear TBox and related structures; keep ontology in place
void
ReasoningKernel :: clearTBox ( void )
{
	delete pTBox;
	pTBox = NULL;
	delete pET;
	pET = NULL;
	delete KE;
	KE = NULL;
	delete AD;
	AD = NULL;
	delete ModSem;
	ModSem = NULL;
	delete ModSyn;
	ModSyn = NULL;
	delete ModSynCount;
	ModSynCount = NULL;
	// during preprocessing the TBox names were cached. clear that cache now.
	getExpressionManager()->clearNameCache();
}

bool
ReasoningKernel :: needForceReload ( void ) const
{
	// if no TBox known -- reload
	if ( pTBox == NULL )
		return true;
	// if ontology wasn't change -- no need to reload
	if ( !Ontology.isChanged() )
		return false;
	// no incremental required -- nothing to do
	if ( !useIncrementalReasoning )
		return true;
	return false;
}

/// force the re-classification of the changed ontology
void
ReasoningKernel :: forceReload ( void )
{
	// reset TBox
	clearTBox();
	newKB();

	// Protege (as the only user of non-trivial monitors with reload) does not accept multiple usage of a monitor
	// so switch it off after the 1st usage
	pMonitor = NULL;

	// (re)load ontology
	TOntologyLoader OntologyLoader(*getTBox());
	OntologyLoader.visitOntology(Ontology);

	if ( dumpOntology )
	{
		TLISPOntologyPrinter OntologyPrinter(std::cout);
		// First print all the declaration (as datarole declarations should be before usages)
		OntologyPrinter.setPrintFlags(/*declarations=*/true, /*axioms=*/false);
		Ontology.visitOntology(OntologyPrinter);
		// Then print logical axioms
		OntologyPrinter.setPrintFlags(/*declarations=*/false, /*axioms=*/true);
		Ontology.visitOntology(OntologyPrinter);
	}

	if ( useIncrementalReasoning )
		initIncremental();

	// after loading ontology became processed completely
	Ontology.setProcessed();
}

//-------------------------------------------------
// Prepare reasoning/query
//-------------------------------------------------

void
ReasoningKernel :: ClassifyOrLoad ( bool needIndividuals )
{
	if ( pSLManager != NULL )	// try to load the taxonomy
	{
		if ( pSLManager->existsContent() )
		{	// previous version exists
			try
			{
				Load();	// loaded => nothing to do
				return;
			}
			catch ( const EFPPSaveLoad& )
			{
				// fail to load -- fall through to the real action
			}
		}
	}
	// perform the real classification
	if ( needIndividuals )
		pTBox->performRealisation();
	else
		pTBox->performClassification();

	// save the result if necessary
	if ( pSLManager != NULL )
		Save();
}

void
ReasoningKernel :: processKB ( KBStatus status )
{
	fpp_assert ( status >= kbCChecked );

	// check whether reasoning was failed
	if ( reasoningFailed )
		throw EFaCTPlusPlus("Can't answer queries due to previous errors");

	KBStatus curStatus = getStatus();

	if ( curStatus >= status )
	{	// nothing to do; but make sure that we are consistent
		if ( !isKBConsistent() )
			throw EFPPInconsistentKB();
		return;
	}

	// here curStatus < kbRealised, and status >= kbChecked
	if ( curStatus == kbEmpty || curStatus == kbLoading )
	{	// load and preprocess KB -- here might be failures
		reasoningFailed = true;

		// load the axioms from the ontology to the TBox
		if ( needForceReload() )
			forceReload();
		else	// just do incremental classification and exit
		{
			doIncremental();
			reasoningFailed = false;
			return;
		}

		// do the preprocessing and consistency check
		pTBox->isConsistent();

		// if there were no exception thrown -- clear the failure status
		reasoningFailed = false;

		// if the consistency check is all we need -- return
		if ( status == kbCChecked )
			return;
	}

	// here we need to do classification or realisation

	if ( !pTBox->isConsistent() )	// nothing to do for inconsistent ontologies
		return;

	ClassifyOrLoad(status == kbRealised);
}

//-----------------------------------------------------------------------------
//--		query caching support
//-----------------------------------------------------------------------------

/// classify query; cache is ready at the point. NAMED means whether concept is just a name
void
ReasoningKernel :: classifyQuery ( void )
{
	// make sure KB is classified
	classifyKB();

	// ... and the cache entry is properly cleared
	fpp_assert ( cachedVertex == NULL );

	// classify general query expression
	bool complexQuery = getTBox()->isComplexQuery(cachedConcept);
	if ( complexQuery )
		getTBox()->classifyQueryConcept();

	// now cached concept is classified
	cachedVertex = cachedConcept->getTaxVertex();

	if ( unlikely(cachedVertex == NULL) )	// fresh concept
	{
		fpp_assert (!complexQuery);
		cachedVertex = getCTaxonomy()->getFreshVertex(cachedConcept);
	}

	// setup proper cache level
	cacheLevel = csClassified;
}

void
ReasoningKernel :: setUpSatCache ( DLTree* query )
{
	// if KB was changed since it was classified,
	// we should catch it before
	fpp_assert ( !Ontology.isChanged() );

	// check if the query is already cached
	if ( checkQueryCache(query) )
	{	// the level should be the same
		fpp_assert ( cacheLevel == csSat );
		// nothing to do
		deleteTree(query);
		return;
	}

	// clear currently cached query
	clearQueryCache();

	// setup concept to be queried
	setQueryConcept(query);

	// everything is fine -- set up cache now
	setQueryCache(query);
	cacheLevel = csSat;
}

void
ReasoningKernel :: setUpCache ( TConceptExpr* query, cacheStatus level )
{
	// if KB was changed since it was classified,
	// we should catch it before
	fpp_assert ( !Ontology.isChanged() );

	// check if the query is already cached
	if ( checkQueryCache(query) )
	{
		fpp_assert ( cacheLevel != csEmpty );
		// query cached with the same or lower level -- nothing to do
		if ( level <= cacheLevel )
			return;
		// the only other option is: cache level is SAT but CLASSIFIED is requested
		fpp_assert ( level == csClassified );
		fpp_assert ( cacheLevel == csSat );
		// classify query and return
		classifyQuery();
		return;
	}

	// clear currently cached query
	clearQueryCache();

	// setup concept to be queried
	setQueryConcept(TreeDeleter(e(query)));

	// everything is fine -- set up cache now
	setQueryCache(query);
	cacheLevel = csSat;

	if ( level == csClassified )
		classifyQuery();
}

//-------------------------------------------------
// concept subsumption query implementation
//-------------------------------------------------

/// class for exploring concept taxonomy to find super classes
class SupConceptActor: public WalkerInterface
{
protected:
	const ClassifiableEntry* pe;
	void entry ( const ClassifiableEntry* q ) { if ( pe == q ) throw std::exception(); }
public:
	SupConceptActor ( ClassifiableEntry* q ) :pe(q) {}
	virtual bool apply ( const TaxonomyVertex& v )
	{
		entry(v.getPrimer());
		for ( TaxonomyVertex::syn_iterator p = v.begin_syn(), p_end=v.end_syn(); p != p_end; ++p )
			entry(*p);
		return true;
	}
}; // SupConceptActor

/// @return true iff C [= D holds
bool
ReasoningKernel :: checkSub ( TConcept* C, TConcept* D )
{
	// check whether a concept is fresh
	if ( unlikely(!isValid(D->pName)) )	// D is fresh
	{
		if ( unlikely(!isValid(C->pName)) )	// C is fresh
			return C == D;	// 2 fresh concepts subsumes one another iff they are the same
		else	// C is known
			return !getTBox()->isSatisfiable(C);	// C [= D iff C=\bottom
	}
	else	// D is known
		if ( unlikely(!isValid(C->pName)) )	// C is fresh
			// C [= D iff D = \top, or ~D = \bottom
			return !checkSatTree(createSNFNot(getTBox()->getTree(C)));
	// here C and D are known (not fresh)
	// check the obvious ones
	if ( unlikely(D->isTop()) || unlikely(C->isBottom()) )
		return true;
	if ( getStatus() < kbClassified )	// unclassified => do via SAT test
		return getTBox()->isSubHolds ( C, D );
	// classified => do the taxonomy traversal
	SupConceptActor actor(D);
	Taxonomy* tax = getCTaxonomy();
	try { tax->getRelativesInfo</*needCurrent=*/true, /*onlyDirect=*/false, /*upDirection=*/true> ( C->getTaxVertex(), actor ); return false; }
	catch (...) { tax->clearVisited(); return true; }
}

//-------------------------------------------------
// all-disjoint query implementation
//-------------------------------------------------

bool
ReasoningKernel :: isDisjointRoles ( void )
{
	// grab all roles from the arg-list
	typedef const std::vector<const TDLExpression*> TExprVec;
	typedef std::vector<const TRole*> TRoleVec;
	TExprVec Disj = getExpressionManager()->getArgList();
	TRoleVec Roles;
	Roles.reserve(Disj.size());
	unsigned int nTopRoles = 0;

	for ( TExprVec::const_iterator p = Disj.begin(), p_end = Disj.end(); p != p_end; ++p )
	{
		if ( TORoleExpr* ORole = dynamic_cast<TORoleExpr*>(*p) )
		{
			TRole* R = getRole ( ORole, "Role expression expected in isDisjointRoles()" );
			if ( R->isBottom() )
				continue;		// empty role is disjoint with everything
			if ( R->isTop() )
				++nTopRoles;	// count universal roles
			else
				Roles.push_back(R);
		}
		else if ( TDRoleExpr* DRole = dynamic_cast<TDRoleExpr*>(*p) )
		{
			TRole* R = getRole ( DRole, "Role expression expected in isDisjointRoles()" );
			if ( R->isBottom() )
				continue;		// empty role is disjoint with everything
			if ( R->isTop() )
				++nTopRoles;	// count universal roles
			else
				Roles.push_back(R);
		}
		else
			throw EFaCTPlusPlus ( "Role expression expected in isDisjointRoles()" );
	}

	// deal with top-roles
	if ( nTopRoles > 0 )
	{
		if ( nTopRoles > 1 || !Roles.empty() )
			return false;	// universal role is not disjoint with anything but the bottom role
		else
			return true;
	}

	// test pair-wise disjointness
	TRoleVec::const_iterator q = Roles.begin(), q_end = Roles.end(), s;
	for ( ; q != q_end; ++q )
		for ( s = q+1; s != q_end; ++s )
			if ( !getTBox()->isDisjointRoles(*q,*s) )
				return false;

	return true;
}

//-------------------------------------------------
// related individuals implementation
//-------------------------------------------------

class RIActor: public WalkerInterface
{
protected:
	ReasoningKernel::CIVec acc;

		/// process single entry in a vertex label
	bool tryEntry ( const ClassifiableEntry* p )
	{
		// check the applicability
		if ( p->isSystem() || !static_cast<const TConcept*>(p)->isSingleton() )
			return false;

		// print the concept
		acc.push_back(static_cast<const TIndividual*>(p));
		return true;
	}

public:
	RIActor ( void ) {}
	virtual ~RIActor ( void ) {}

	virtual bool apply ( const TaxonomyVertex& v )
	{
		bool ret = tryEntry(v.getPrimer());

		for ( TaxonomyVertex::syn_iterator p = v.begin_syn(), p_end = v.end_syn(); p != p_end; ++p )
			ret |= tryEntry(*p);

		return ret;
	}
	void clear ( void ) { acc.clear(); }
	const ReasoningKernel::CIVec& getAcc ( void ) const { return acc; }
}; // RIActor

ReasoningKernel::CIVec
ReasoningKernel :: buildRelatedCache ( TIndividual* I, const TRole* R )
{
#ifdef FPP_DEBUG_PRINT_RELATED_PROGRESS
	std::cout << "Related for " << I->getName() << " via property " << R->getName() << "\n";
#endif

	// for synonyms: use the representative's cache
	if ( R->isSynonym() )
		return getRelated ( I, resolveSynonym(R) );

	// FIXME!! return an empty set for data roles
	if ( R->isDataRole() )
		return CIVec();

	// empty role has no fillers
	if ( R->isBottom() )
		return CIVec();

	// now fills the query
	RIActor actor;
	// ask for instances of \exists R^-.{i}
	TORoleExpr* InvR = R->getId() > 0
		? getExpressionManager()->Inverse(getExpressionManager()->ObjectRole(R->getName()))
		: getExpressionManager()->ObjectRole(R->inverse()->getName());
	TConceptExpr* query =
		R->isTop() ? getExpressionManager()->Top() : 	// universal role has all the named individuals as a filler
		getExpressionManager()->Value ( InvR, getExpressionManager()->Individual(I->getName()) );
	getInstances ( query, actor );
	return actor.getAcc();
}

/// @return in Rs all (DATA)-roles R s.t. (I,x):R; add inverses if NEEDI is true
void
ReasoningKernel :: getRelatedRoles ( const TIndividualExpr* I, NamesVector& Rs, bool data, bool needI )
{
	realiseKB();	// ensure KB is ready to answer the query
	Rs.clear();

	TIndividual* i = getIndividual ( I, "individual name expected in the getRelatedRoles()" );
	RoleMaster* RM = data ? getDRM() : getORM();
	for ( RoleMaster::iterator p = RM->begin(), p_end = RM->end(); p < p_end; ++p )
	{
		const TRole* R = *p;
		if ( ( R->getId() > 0 || needI ) && !getRelated(i,R).empty() )
			Rs.push_back(R);
	}
}

void
ReasoningKernel :: getRoleFillers ( const TIndividualExpr* I, const TORoleExpr* R, IndividualSet& Result )
{
	realiseKB();	// ensure KB is ready to answer the query
	CIVec vec = getRelated ( getIndividual ( I, "Individual name expected in the getRoleFillers()" ),
							 getRole ( R, "Role expression expected in the getRoleFillers()" ) );
	for ( CIVec::iterator p = vec.begin(), p_end = vec.end(); p < p_end; ++p )
		Result.push_back(const_cast<TIndividual*>(*p));
}

/// set RESULT into set of J's such that R(I,J)
bool
ReasoningKernel :: isRelated ( const TIndividualExpr* I, const TORoleExpr* R, const TIndividualExpr* J )
{
	realiseKB();	// ensure KB is ready to answer the query
	TIndividual* i = getIndividual ( I, "Individual name expected in the isRelated()" );
	TRole* r = getRole ( R, "Role expression expected in the isRelated()" );
	if ( r->isDataRole() )
		return false;	// FIXME!! not implemented

	TIndividual* j = getIndividual ( J, "Individual name expected in the isRelated()" );
	CIVec vec = getRelated ( i, r );
	for ( CIVec::iterator p = vec.begin(), p_end = vec.end(); p < p_end; ++p )
		if ( j == (*p) )
			return true;

	return false;
}

//----------------------------------------------------------------------------------
// atomic decomposition queries
//----------------------------------------------------------------------------------

	/// create new atomic decomposition of the loaded ontology using TYPE. @return size of the AD
size_t
ReasoningKernel :: getAtomicDecompositionSize ( ModuleMethod moduleMethod, ModuleType moduleType )
{
	// init AD field
	if ( unlikely(AD != NULL) )
		delete AD;

	AD = new AtomicDecomposer(getModExtractor(moduleMethod)->getModularizer());
	return AD->getAOS ( &Ontology, moduleType )->size();
}
	/// get a set of axioms that corresponds to the atom with the id INDEX
const TOntologyAtom::AxiomSet&
ReasoningKernel :: getAtomAxioms ( unsigned int index ) const
{
	return (*AD->getAOS())[index]->getAtomAxioms();
}
	/// get a set of axioms that corresponds to the module of the atom with the id INDEX
const TOntologyAtom::AxiomSet&
ReasoningKernel :: getAtomModule ( unsigned int index ) const
{
	return (*AD->getAOS())[index]->getModule();
}
	/// get a set of atoms on which atom with index INDEX depends
const TOntologyAtom::AtomSet&
ReasoningKernel :: getAtomDependents ( unsigned int index ) const
{
	return (*AD->getAOS())[index]->getDepAtoms();
}

	/// get a number of locality checks performed for creating an AD
unsigned long long
ReasoningKernel :: getLocCheckNumber ( void ) const
{
	return AD->getLocChekNumber();
}

OntologyBasedModularizer*
ReasoningKernel :: getModExtractor ( ModuleMethod moduleMethod )
{
	// check whether we need init
	OntologyBasedModularizer*& pMod = getModPointer(moduleMethod);
	if ( unlikely(pMod == NULL) )
		pMod = new OntologyBasedModularizer ( getOntology(), moduleMethod );
	return pMod;
}

/// get a set of axioms that corresponds to the atom with the id INDEX
const AxiomVec&
ReasoningKernel :: getModule ( ModuleMethod moduleMethod, ModuleType moduleType )
{
	// init signature
	TSignature Sig;
	// NB: we don't care about locality type here as modularizer will change it
	Sig.setLocality(false);
	const std::vector<const TDLExpression*> signature = getExpressionManager()->getArgList();
	for ( std::vector<const TDLExpression*>::const_iterator q = signature.begin(), q_end = signature.end(); q != q_end; ++q )
		if ( const TNamedEntity* entity = dynamic_cast<const TNamedEntity*>(*q) )
			Sig.add(entity);
	return getModExtractor(moduleMethod)->getModule ( Sig, moduleType );
}

/// get a set of axioms that corresponds to the atom with the id INDEX
const AxiomVec&
ReasoningKernel :: getNonLocal ( ModuleMethod moduleMethod, ModuleType moduleType )
{
	// init signature
	TSignature Sig;
	Sig.setLocality(moduleType == M_TOP);	// true for TOP, false for BOT/STAR
	const std::vector<const TDLExpression*> signature = getExpressionManager()->getArgList();
	for ( std::vector<const TDLExpression*>::const_iterator q = signature.begin(), q_end = signature.end(); q != q_end; ++q )
		if ( const TNamedEntity* entity = dynamic_cast<const TNamedEntity*>(*q) )
			Sig.add(entity);

	// do check
	LocalityChecker* LC = getModExtractor(moduleMethod)->getModularizer()->getLocalityChecker();
	LC->setSignatureValue(Sig);
	Result.clear();
	for ( TOntology::iterator p = getOntology().begin(), p_end = getOntology().end(); p != p_end; ++p )
		if ( !LC->local(*p) )
			Result.push_back(*p);
	return Result;
}

//----------------------------------------------------------------------------------
// save/load interface
//----------------------------------------------------------------------------------

/// check whether  @return true if a file with reasoner state with a given NAME exists.
bool
ReasoningKernel :: checkSaveLoadContext ( const std::string& name ) const
{
	return SaveLoadManager(name).existsContent();
}

/// set a save/load file to a given NAME
bool
ReasoningKernel :: setSaveLoadContext ( const std::string& name )
{
	delete pSLManager;
	pSLManager = new SaveLoadManager(name);
	return pSLManager->existsContent();
}

/// clear a cache for a given name
bool
ReasoningKernel :: clearSaveLoadContext ( const std::string& name ) const
{
	if ( checkSaveLoadContext(name) )
	{
		SaveLoadManager(name).clearContent();
		return true;
	}
	return false;
}

//******************************************
//* Initialization
//******************************************

bool ReasoningKernel :: initOptions ( void )
{
	// register all possible options used in FaCT++ Kernel

	// options for TBox

	// register "dumpQuery" option -- 11-08-04
	if ( KernelOptions.RegisterOption (
		"dumpQuery",
		"Option 'dumpQuery' dumps sub-TBox relevant to given satisfiability/subsumption query.",
		ifOption::iotBool,
		"false"
		) )
		return true;

	// register "absorptionFlags" option (04/05/2005)
	if ( KernelOptions.RegisterOption (
		"absorptionFlags",
		"Option 'absorptionFlags' sets up absorption process for general axioms. "
		"It text field of arbitrary length; every symbol means the absorption action: "
		"(B)ottom Absorption), (T)op absorption, (E)quivalent concepts replacement, (C)oncept absorption, "
		"(N)egated concept absorption, (F)orall expression replacement, Simple (f)orall expression replacement, "
		"(R)ole absorption, (S)plit",
		ifOption::iotText,
		"BTEfCFSR"
		) )
		return true;

	// register "alwaysPreferEquals" option (26/01/2006)
	if ( KernelOptions.RegisterOption (
		"alwaysPreferEquals",
		"Option 'alwaysPreferEquals' allows user to enforce usage of C=D definition instead of C[=D "
		"during absorption, even if implication appeares earlier in stream of axioms.",
		ifOption::iotBool,
		"true"
		) )
		return true;

	// register "useSpecialDomains" option (25/10/2011)
	if ( KernelOptions.RegisterOption (
		"useSpecialDomains",
		"Option 'useSpecialDomains' (development) controls the special processing of R&D for non-simple roles. "
		"Should always be set to true.",
		ifOption::iotBool,
		"true"
		) )
		return true;

	// options for DLDag

	// register "orSortSub" option (20/12/2004)
	if ( KernelOptions.RegisterOption (
		"orSortSub",
		"Option 'orSortSub' define the sorting order of OR vertices in the DAG used in subsumption tests. "
		"Option has form of string 'Mop', where 'M' is a sort field (could be 'D' for depth, 'S' for size, 'F' "
		"for frequency, and '0' for no sorting), 'o' is a order field (could be 'a' for ascending and 'd' "
		"for descending mode), and 'p' is a preference field (could be 'p' for preferencing non-generating "
		"rules and 'n' for not doing so).",
		ifOption::iotText,
		"0"
		) )
		return true;

	// register "orSortSat" option (20/12/2004)
	if ( KernelOptions.RegisterOption (
		"orSortSat",
		"Option 'orSortSat' define the sorting order of OR vertices in the DAG used in satisfiability tests "
		"(used mostly in caching). Option has form of string 'Mop', see orSortSub for details.",
		ifOption::iotText,
		"0"
		) )
		return true;

	// options for ToDoTable

	// register "IAOEFLG" option
	if ( KernelOptions.RegisterOption (
		"IAOEFLG",
		"Option 'IAOEFLG' define the priorities of different operations in TODO list. Possible values are "
		"7-digit strings with ony possible digit are 0-6. The digits on the places 1, 2, ..., 7 are for "
		"priority of Id, And, Or, Exists, Forall, LE and GE operations respectively. The smaller number means "
		"the higher priority. All other constructions (TOP, BOTTOM, etc) has priority 0.",
		ifOption::iotText,
		"1263005"
		) )
		return true;

	// options for Reasoner

	// register "useSemanticBranching" option
	if ( KernelOptions.RegisterOption (
		"useSemanticBranching",
		"Option 'useSemanticBranching' switch semantic branching on and off. The usage of semantic branching "
		"usually leads to faster reasoning, but sometime could give small overhead.",
		ifOption::iotBool,
		"true"
		) )
		return true;

	// register "useBackjumping" option
	if ( KernelOptions.RegisterOption (
		"useBackjumping",
		"Option 'useBackjumping' switch backjumping on and off. The usage of backjumping "
		"usually leads to much faster reasoning.",
		ifOption::iotBool,
		"true"
		) )
		return true;

	// register "testTimeout" option -- 21/08/09
	if ( KernelOptions.RegisterOption (
		"testTimeout",
		"Option 'testTimeout' sets timeout for a single reasoning test in milliseconds.",
		ifOption::iotInt,
		"0"
		) )
		return true;

	// options for Blocking

	// register "useLazyBlocking" option -- 08-03-04
	if ( KernelOptions.RegisterOption (
		"useLazyBlocking",
		"Option 'useLazyBlocking' makes checking of blocking status as small as possible. This greatly "
		"increase speed of reasoning.",
		ifOption::iotBool,
		"true"
		) )
		return true;

	// register "useAnywhereBlocking" option (18/08/2008)
	if ( KernelOptions.RegisterOption (
		"useAnywhereBlocking",
		"Option 'useAnywhereBlocking' allow user to choose between Anywhere and Ancestor blocking.",
		ifOption::iotBool,
		"true"
		) )
		return true;

	// register "skipBeforeBlock" option (28/02/2009)
	if ( KernelOptions.RegisterOption (
		"skipBeforeBlock",
		"Internal use only. Option 'skipBeforeBlock' allow user to skip given number of nodes before make a block.",
		ifOption::iotInt,
		"0"
		) )
		return true;

	// options for Taxonomy

	// register "useCompletelyDefined" option
	if ( KernelOptions.RegisterOption (
		"useCompletelyDefined",
		"Option 'useCompletelyDefined' leads to simpler Taxonomy creation if TBox contains no non-primitive "
		"concepts. Unfortunately, it is quite rare case.",
		ifOption::iotBool,
		"true"
		) )
		return true;

	// options for kernel

	// register "checkAD" option (24/02/2012)
	if ( KernelOptions.RegisterOption (
		"checkAD",
		"Option 'checkAD' forces FaCT++ to create the AD and exit instead of performing classification",
		ifOption::iotBool,
		"false"
		) )
		return true;

	// register "dumpOntology" option (28/03/2013)
	if ( KernelOptions.RegisterOption (
		"dumpOntology",
		"Option 'dumpOntology' dumps the ontology loaded into the reasoner in a LISP-like format",
		ifOption::iotBool,
		"false"
		) )
		return true;

	// register "useIncrementalReasoning" option (21/06/2013)
	if ( KernelOptions.RegisterOption (
		"useIncrementalReasoning",
		"Option 'useIncrementalReasoning' (development) allows one to reason efficiently about small changes in the ontology.",
		ifOption::iotBool,
		"false"
		) )
		return true;

	// register "allowUndefinedNames" option (03/11/2013)
	if ( KernelOptions.RegisterOption (
		"allowUndefinedNames",
		"Option 'allowUndefinedNames' describes the policy of undefined names.",
		ifOption::iotBool,
		"true"
		) )
		return true;

	// all was registered OK
	return false;
}