File: RAutomaton.h

package info (click to toggle)
fact%2B%2B 1.6.5~dfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, forky, sid, trixie
  • size: 4,496 kB
  • sloc: cpp: 28,000; java: 22,674; xml: 3,268; makefile: 102; ansic: 61; sh: 3
file content (382 lines) | stat: -rw-r--r-- 11,695 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
/* This file is part of the FaCT++ DL reasoner
Copyright (C) 2006-2015 Dmitry Tsarkov and The University of Manchester
Copyright (C) 2015-2016 Dmitry Tsarkov

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
*/

#ifndef RAUTOMATON_H
#define RAUTOMATON_H

#include <vector>
#include <iostream>

#include "fpp_assert.h"
#include "tFastSet.h"

class TRole;

/// state of the role automaton
// TODO: think to use short
typedef unsigned int RAState;

/// transition in the automaton for the role in RIQ-like languages
class RATransition
{
protected:	// typedefs
		/// set or roles that labels transition
	typedef std::vector<const TRole*> TLabel;

public:		// typedefs
		/// iterator over roles
	typedef TLabel::const_iterator const_iterator;

protected:	// members
		/// set of roles that may affect the transition
	TLabel label;
		/// final state of the transition
	RAState state;

public:		// interface
		/// create a transition to given state
	RATransition ( RAState st ) : state(st) {}
		/// create a transition with a given label R to given state ST
	RATransition ( RAState st, const TRole* R ) : state(st) { add(R); }
		/// copy c'tor
	RATransition ( const RATransition& trans ) : label(trans.label), state(trans.state) {}
		/// assignment
	RATransition& operator = ( const RATransition& trans )
	{
		label = trans.label;
		state = trans.state;
		return *this;
	}
		/// d'tor
	~RATransition ( void ) {}

	// update the transition

		/// add role R to transition's label
	void add ( const TRole* R ) { label.push_back(R); }
		/// add label of transition TRANS to transition's label
	void add ( const RATransition& trans )
		{ label.insert ( label.end(), trans.label.begin(), trans.label.end() ); }
		/// add label of transition TRANS to transition's label only if they are new
	void addIfNew ( const RATransition& trans )
	{
		for ( const_iterator p = trans.label.begin(), p_end = trans.label.end(); p < p_end; ++p )
			if ( !applicable(*p) )
				add(*p);
	}

	// query the transition

		/// get the 1st role in (multi-)transition
	const_iterator begin ( void ) const { return label.begin(); }
		/// get the last role in (multi-)transition
	const_iterator end ( void ) const { return label.end(); }

		/// give a final point of the transition
	RAState final ( void ) const { return state; }
		/// check whether transition is applicable wrt role R
	bool applicable ( const TRole* R ) const
	{
		for ( const_iterator p = label.begin(), p_end = label.end(); p < p_end; ++p )
			if ( *p == R )
				return true;

		return false;
	}
		/// check whether transition is empty
	bool empty ( void ) const { return label.empty(); }
		/// check whether transition is TopRole one
	bool isTop ( void ) const;
		/// print the transition starting from FROM
	void Print ( std::ostream& o, RAState from ) const;
}; // RATransition

/// class to represent transitions from a single state in an automaton
class RAStateTransitions
{
protected:	// types
		/// keep all the transitions
	typedef std::vector<RATransition*> RTBase;
		/// RW iterators
	typedef RTBase::iterator iterator;

public:		// type interface
		/// RO iterators
	typedef RTBase::const_iterator const_iterator;

protected:	// members
		/// all transitions
	RTBase Base;
		/// set of all roles that can be applied by one of the transitions
	TFastSet<unsigned int> ApplicableRoles;
		/// state from which all the transition starts
	RAState from;
		/// check whether there is an empty transition going from this state
	bool EmptyTransition;
		/// true iff there is a top transition going from this state
	bool TopTransition;
		/// flag whether the role is data or not (valid only for simple automata)
	bool DataRole;

protected:	// methods
		/// RW begin
	iterator begin ( void ) { return Base.begin(); }
		/// RW end
	iterator end ( void ) { return Base.end(); }

public:		// interface
		/// empty c'tor
	RAStateTransitions ( void ) : EmptyTransition(false), TopTransition(false) {}
		/// copy c'tor
	RAStateTransitions ( const RAStateTransitions& trans )
		: EmptyTransition(trans.EmptyTransition)
		, TopTransition(trans.TopTransition)
	{
		for ( const_iterator p = trans.begin(), p_end = trans.end(); p != p_end; ++p )
			Base.push_back(new RATransition(**p));
	}
		/// assignment
	RAStateTransitions& operator = ( const RAStateTransitions& trans )
	{
		for ( const_iterator p = trans.begin(), p_end = trans.end(); p != p_end; ++p )
			Base.push_back(new RATransition(**p));
		EmptyTransition = trans.EmptyTransition;
		TopTransition = trans.TopTransition;
		return *this;
	}
		/// d'tor: delete all transitions
	~RAStateTransitions ( void )
	{
		for ( iterator p = begin(), p_end = end(); p != p_end; ++p )
			delete *p;
	}

		/// set up state transitions: no more additions to the structure
	void setup ( RAState state, size_t nRoles, bool data );

		/// add a transition from a given state
	void add ( RATransition* trans )
	{
		Base.push_back(trans);
		if ( trans->empty() )
			EmptyTransition = true;
		if ( trans->isTop() )
			TopTransition = true;
	}
		/// add information from TRANS to existing transition between the same states. @return false if no such transition found
	bool addToExisting ( const RATransition* trans );

		/// @return true iff there are no transitions from this state
	bool empty ( void ) const { return Base.empty(); }
		/// @return true iff there is an empty transition from the state
	bool hasEmptyTransition ( void ) const { return EmptyTransition; }
		/// @return true iff there is a top-role transition from the state
	bool hasTopTransition ( void ) const { return TopTransition; }

	// RO access

		/// RO begin
	const_iterator begin ( void ) const { return Base.begin(); }
		/// RO end
	const_iterator end ( void ) const { return Base.end(); }
		/// get FROM state
	RAState getFrom ( void ) const { return from; }
		/// check whether one of the transitions accept R; implementation is in tRole.h
	bool recognise ( const TRole* R ) const;
		/// @return true iff there is only one transition
	bool isSingleton ( void ) const { return Base.size() == 1; }
		/// @return final state of the 1st transition; used for singletons
	RAState getTransitionEnd ( void ) const { return Base.front()->final(); }

		/// print all the transitions starting from the state FROM
	void Print ( std::ostream& o ) const
	{
		for ( const_iterator p = begin(), p_end = end(); p != p_end; ++p )
			(*p)->Print ( o, from );
	}
}; // RAStateTransitions

/// automaton for the role in RIQ-like languages
class RoleAutomaton
{
protected:	// members
		/// all transitions of the automaton, groupped by a starting state
	std::vector<RAStateTransitions> Base;
		/// maps original automata state into the new ones (used in copyRA)
	std::vector<unsigned int> map;
		/// initial state of the next automaton in chain
	RAState iRA;
		/// flag whether automaton is input safe
	bool ISafe;
		/// flag whether automaton is output safe
	bool OSafe;
		/// flag for the automaton to be completed
	bool Complete;

protected:	// methods
		/// make sure that STATE exists in the automaton (update ton's size)
	void ensureState ( RAState state )
	{
		if ( state >= Base.size() )
			Base.resize(state+1);
	}

		/// state that the automaton is i-unsafe
	void setIUnsafe ( void ) { ISafe = false; }
		/// state that the automaton is o-unsafe
	void setOUnsafe ( void ) { OSafe = false; }
		/// check whether transition between FROM and TO breaks safety
	void checkTransition ( RAState from, RAState to )
	{
		if ( from == final() )
			setOUnsafe();
		if ( to == initial() )
			setIUnsafe();
	}

		/// add TRANSition leading from a state FROM; all states are known to fit the ton
	void addTransition ( RAState from, RATransition* trans )
	{
		checkTransition ( from, trans->final() );
		Base[from].add(trans);
	}
		/// make the internal chain transition (between chainState and TO)
	void nextChainTransition ( RAState to )
	{
		addTransition ( iRA, new RATransition(to) );
		iRA = to;
	}

		/// add copy of the RA to given one; use internal MAP to renumber the states
	void addCopy ( const RoleAutomaton& RA );
		/// init internal map according to RA size and final (FRA) states
	void initMap ( size_t RASize, RAState fRA );

public:		// interface
		/// empty c'tor
	RoleAutomaton ( void )
		: iRA(0)
		, ISafe(true)
		, OSafe(true)
		, Complete(false)
	{
		ensureState(1);
	}
		/// copy c'tor
	RoleAutomaton ( const RoleAutomaton& RA );
		/// assignment
	RoleAutomaton& operator= ( const RoleAutomaton& RA );
		/// empty d'tor
	~RoleAutomaton ( void ) {}

	// access to states

		/// get the initial state
	RAState initial ( void ) const { return 0; }
		/// get the final state
	RAState final ( void ) const { return 1; }
		/// create new state
	RAState newState ( void )
	{
		RAState ret = (RAState) Base.size();
		ensureState(ret);
		return ret;
	}

		/// get access to the transitions starting from STATE
	const RAStateTransitions& operator [] ( RAState state ) const { return Base[state]; }
		/// set up all transitions passing number of roles
	void setup ( size_t nRoles, bool data )
	{
		for ( RAState i = 0; i < Base.size(); ++i )
			Base[i].setup ( i, nRoles, data );
	}

	// automaton's construction

		/// add TRANSition leading from a given STATE; check whether all states are correct
	void addTransitionSafe ( RAState state, RATransition* trans )
	{
		ensureState(state);
		ensureState(trans->final());
		addTransition ( state, trans );
	}

	// chain automaton creation

		/// make the beginning of the chain
	void initChain ( RAState from ) { iRA = from; }
		/// add an Automaton to the chain that would start from the iRA; OSAFE shows the safety of a previous automaton in a chain
	bool addToChain ( const RoleAutomaton& RA, bool oSafe, RAState fRA );
		/// add an Automaton to the chain with a default final state
	bool addToChain ( const RoleAutomaton& RA, bool oSafe ) { return addToChain ( RA, oSafe, (RAState) size()+1 ); }

	// i/o safety

		/// get the i-safe value
	bool isISafe ( void ) const { return ISafe; }
		/// get the o-safe value
	bool isOSafe ( void ) const { return OSafe; }

	// automaton completeness

		/// mark an automaton as completed
	void setCompleted ( void ) { Complete = true; }
		/// check whether automaton is completed
	bool isCompleted ( void ) const { return Complete; }

	// get some stats

		/// return number of distinct states
	size_t size ( void ) const { return Base.size(); }
		/// @return true iff the automaton is simple
	bool isSimple ( void ) const
	{
		fpp_assert(isCompleted());
		return size() == 2 && ISafe && OSafe;
	}

	// add single RA

		/// add RA from a subrole to given one
	void addRA ( const RoleAutomaton& RA )
	{
		fpp_assert(!isCompleted());
		if ( RA.isSimple() )
		{
			bool ok = Base[initial()].addToExisting(*RA[initial()].begin());
			fpp_assert(ok);
		}
		else
		{
			initChain(initial());
			addToChain ( RA, /*oSafe=*/false, final() );
		}
	}

		/// print an automaton
	void Print ( std::ostream& o ) const
	{
		for ( RAState state = 0; state < Base.size(); ++state )
			Base[state].Print(o);
	}
}; // RoleAutomaton

#endif