1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
|
/* This file is part of the FaCT++ DL reasoner
Copyright (C) 2003-2015 Dmitry Tsarkov and The University of Manchester
Copyright (C) 2015-2016 Dmitry Tsarkov
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "dlCompletionGraph.h"
DlCompletionTreeArc*
DlCompletionGraph :: createEdge (
DlCompletionTree* from,
DlCompletionTree* to,
bool isPredEdge,
const TRole* roleName,
const DepSet& dep )
{
// create 2 arcs between FROM and TO
DlCompletionTreeArc* forward = CTEdgeHeap.get();
forward->init ( roleName, dep, to );
forward->setSuccEdge(!isPredEdge);
DlCompletionTreeArc* backward = CTEdgeHeap.get();
backward->init ( roleName->inverse(), dep, from );
backward->setSuccEdge(isPredEdge);
// set the reverse link
forward->setReverse(backward);
// connect them to nodes
saveNode ( from, branchingLevel );
saveNode ( to, branchingLevel );
// add the edges as corresponding neighbours
from->addNeighbour(forward);
to->addNeighbour(backward);
if ( LLM.isWritable(llGTA) )
{
LL << " ce(";
if ( isPredEdge )
LL << to->getId() << "<-" << from->getId();
else
LL << from->getId() << "->" << to->getId();
LL << "," << roleName->getName() << ")";
}
return forward;
}
/// replace the EDGE (that comes from old node to X) with a new one, that comes from NODE to X
DlCompletionTreeArc*
DlCompletionGraph :: moveEdge ( DlCompletionTree* node, DlCompletionTreeArc* edge,
bool isPredEdge, const DepSet& dep )
{
// skip already purged edges
if ( edge->isIBlocked())
return NULL;
// skip edges not leading to nominal nodes
if ( !isPredEdge && !edge->getArcEnd()->isNominalNode() )
return NULL;
const TRole* R = edge->getRole();
// we shall copy reflexive edges in a specific way
if ( edge->isReflexiveEdge() )
return createLoop ( node, R, dep );
DlCompletionTree* to = edge->getArcEnd();
// invalidate old edge
invalidateEdge(edge);
// try to find for NODE->TO (TO->NODE) whether we
// have TO->NODE (NODE->TO) edge already
for ( DlCompletionTree::const_edge_iterator p = node->begin(), p_end = node->end(); p < p_end; ++p )
if ( (*p)->getArcEnd() == to && (*p)->isPredEdge() != isPredEdge )
return addRoleLabel ( node, to, !isPredEdge, R, dep );
return addRoleLabel ( node, to, isPredEdge, R, dep );
}
// merge labels; see SHOIN paper for detailed description
void DlCompletionGraph :: Merge ( DlCompletionTree* from, DlCompletionTree* to,
const DepSet& dep,
std::vector<DlCompletionTreeArc*>& edges )
{
edges.clear();
// 1. For all x: x->FROM make x->TO
// FIXME!! no optimisations (in case there exists an edge TO->x labelled with R-)
// 2. For all nominal x: FROM->x make TO->x
// FIXME!! no optimisations (in case there exists an edge x->TO labelled with R-)
for ( DlCompletionTree::const_edge_iterator p = from->begin(), p_end = from->end(); p < p_end; ++p )
{
if ( (*p)->isPredEdge() || (*p)->getArcEnd()->isNominalNode() )
{
DlCompletionTreeArc* temp = moveEdge ( to, *p, (*p)->isPredEdge(), dep );
if ( temp != NULL )
edges.push_back(temp);
}
if ( (*p)->isSuccEdge() )
purgeEdge ( *p, to, dep );
}
// 4. For all x: FROM \neq x, add TO \neq x
updateIR ( to, from, dep );
// 5. Purge FROM
purgeNode ( from, to, dep );
}
void
DlCompletionGraph :: purgeNode ( DlCompletionTree* p, const DlCompletionTree* root, const DepSet& dep )
{
if ( p->isPBlocked() )
return;
saveRareCond ( p->setPBlocked ( root, dep ) );
// update successors
for ( DlCompletionTree::const_edge_iterator q = p->begin(); q != p->end(); ++q )
if ( (*q)->isSuccEdge() && !(*q)->isIBlocked() )
purgeEdge ( *q, root, dep );
}
/// purge edge E with given ROOT and DEP-set
void
DlCompletionGraph :: purgeEdge ( DlCompletionTreeArc* e, const DlCompletionTree* root, const DepSet& dep )
{
invalidateEdge(e); // invalidate given link
if ( e->getArcEnd()->isBlockableNode() )
purgeNode ( e->getArcEnd(), root, dep ); // purge blockable successor
}
// save/restore
void DlCompletionGraph :: save ( void )
{
SaveState* s = Stack.push();
s->nNodes = endUsed;
s->sNodes = SavedNodes.size();
s->nEdges = CTEdgeHeap.size();
RareStack.incLevel();
++branchingLevel;
}
void DlCompletionGraph :: restore ( unsigned int level )
{
fpp_assert ( level > 0 );
branchingLevel = level;
RareStack.restore(level);
SaveState* s = Stack.pop(level);
endUsed = s->nNodes;
size_t nSaved = s->sNodes;
iterator p = SavedNodes.begin()+(long)nSaved, p_end = SavedNodes.end();
if ( endUsed < size_t(p_end-p) ) // it's cheaper to restore all nodes
for ( p = begin(), p_end = end(); p < p_end; ++p )
restoreNode ( (*p), level );
else
for ( ; p < p_end; ++p )
if ( (*p)->getId() < endUsed ) // don't restore nodes that are dead anyway
restoreNode ( (*p), level );
SavedNodes.resize(nSaved);
CTEdgeHeap.resize(s->nEdges);
}
// printing CGraph
void DlCompletionGraph :: Print ( std::ostream& o )
{
// init indentation and node labels
CGPIndent = 0;
std::vector<bool> temp ( endUsed, false );
CGPFlag.swap(temp);
const_iterator p = begin(), p_end = end();
unsigned int i = 1; // node id
// mark all nominals as already printed: they full subtries will be output with a nominal cloud
for ( ++p; p < p_end && (*p)->isNominalNode(); ++p, ++i )
CGPFlag[i] = true;
// print tree starting from the root node
p = begin();
PrintNode ( *p, o );
// if there are nominals in the graph -- print the nominal cloud
for ( ++p; p < p_end && (*p)->isNominalNode(); ++p )
{
// print given nominal node in full
CGPFlag[(*p)->getId()] = false;
PrintNode ( *p, o );
}
o << "\n";
}
void
DlCompletionGraph :: PrintEdge ( DlCompletionTree::const_edge_iterator edge, const DlCompletionTree* parent, std::ostream& o )
{
const DlCompletionTree* node = (*edge)->getArcEnd();
bool succEdge = (*edge)->isSuccEdge();
PrintIndent(o);
for ( ; edge != parent->end(); ++edge )
if ( (*edge)->getArcEnd() == node && (*edge)->isSuccEdge() == succEdge )
o << " ", (*edge)->Print(o); // print edge's label
if ( node == parent ) // print loop
{
PrintIndent(o);
o << "-loop to node " << parent->getId();
}
else
PrintNode ( node, o );
}
/// print node of the graph with proper indentation
void
DlCompletionGraph :: PrintNode ( const DlCompletionTree* node, std::ostream& o )
{
if ( CGPIndent )
{
PrintIndent(o);
o << "-";
}
else
o << "\n";
node->PrintBody(o); // print node's label
// don't print subtree twice
if ( CGPFlag[node->getId()] )
{
o << "d";
return;
}
CGPFlag[node->getId()] = true; // mark node printed
// we want to print incoming edges for the nominal cloud
bool wantPred = node->isNominalNode();
// print all children
++CGPIndent;
for ( DlCompletionTree::const_edge_iterator p = node->begin(); p != node->end(); ++p )
if ( (*p)->isSuccEdge() || ( wantPred && (*p)->getArcEnd()->isNominalNode() ) )
PrintEdge ( p, node, o );
--CGPIndent;
}
|