1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
|
/* This file is part of the FaCT++ DL reasoner
Copyright (C) 2003-2015 Dmitry Tsarkov and The University of Manchester
Copyright (C) 2015-2016 Dmitry Tsarkov
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef DLCOMPLETIONTREE_H
#define DLCOMPLETIONTREE_H
#include <vector>
#include "globaldef.h"
#include "dlCompletionTreeArc.h"
#include "tSaveList.h"
#include "tRestorer.h"
#include "CGLabel.h"
#include "logging.h"
class DLDag;
class DlCompletionGraph;
// use the following to control logging information about saving/restoring nodes
#define RKG_CHECK_BACKJUMPING
#if USE_LOGGING // don't gather statistics w/o logging
# define USE_BLOCKING_STATISTICS
#endif
#ifdef USE_BLOCKING_STATISTICS
extern void printBlockingStat1 ( std::ostream& o );
extern void clearBlockingStat1 ( void );
# define printBlockingStat(O) printBlockingStat1(O)
# define clearBlockingStat() clearBlockingStat1()
#else
# define printBlockingStat(O) (void)NULL
# define clearBlockingStat() (void)NULL
#endif
/// level of CTree's nominal node
typedef unsigned short CTNominalLevel;
/// default level for the Blockable node
const CTNominalLevel BlockableLevel = static_cast<CTNominalLevel>(-1);
class DlCompletionTree//: public Loki::SmallObject<>
{
friend class DlCompletionGraph;
protected: // internal classes
/// class for saving Completion Tree nodes state
class SaveState
{
public: // members
/// saving status of the label
CGLabel::SaveState lab;
/// curLevel of the Node structure
unsigned int curLevel;
/// amount of neighbours
size_t nNeighbours;
private: // protection from copying
/// no assignment
SaveState& operator = ( const SaveState& node );
public: // interface
/// empty c'tor
SaveState ( void ) {}
/// copy c'tor
SaveState ( const SaveState& node )
: lab (node.lab)
, curLevel (node.curLevel)
, nNeighbours(node.nNeighbours)
{}
/// empty d'tor
virtual ~SaveState ( void ) {} // used in SaveList => virtual
/// get level of a saved node
unsigned int level ( void ) const { return curLevel; }
}; // SaveState
/// restore blocked node
class UnBlock: public TRestorer
{
protected:
DlCompletionTree* p;
const DlCompletionTree* Blocker;
DepSet dep;
bool pBlocked, dBlocked;
public:
UnBlock ( DlCompletionTree* q ) : p(q), Blocker(q->Blocker), dep(q->pDep), pBlocked(q->pBlocked), dBlocked(q->dBlocked) {}
virtual ~UnBlock ( void ) {}
void restore ( void ) { p->Blocker = Blocker; p->pDep = dep; p->pBlocked = pBlocked; p->dBlocked = dBlocked; }
}; // UnBlock
/// restore (un)cached node
class CacheRestorer: public TRestorer
{
protected:
DlCompletionTree* p;
bool cached;
public:
CacheRestorer ( DlCompletionTree* q ) : p(q), cached(q->cached) {}
virtual ~CacheRestorer ( void ) {}
void restore ( void ) { p->cached = cached; }
}; // CacheRestorer
#ifdef RKG_IR_IN_NODE_LABEL
/// restore node after IR set change
class IRRestorer: public TRestorer
{
protected:
DlCompletionTree* p;
size_t n;
public:
IRRestorer ( DlCompletionTree* q ) : p(q), n(q->IR.size()) {}
virtual ~IRRestorer ( void ) {}
void restore ( void ) { p->IR.resize(n); }
}; // IRRestorer
#endif
public: // type interface
/// type for set of arcs
typedef std::vector<DlCompletionTreeArc*> ArcCollection;
/// iterator on edges
typedef ArcCollection::iterator edge_iterator;
/// const iterator on edges
typedef ArcCollection::const_iterator const_edge_iterator;
/// RO iterator on label
typedef CGLabel::const_iterator const_label_iterator;
#ifdef RKG_IR_IN_NODE_LABEL
/// type for inequality relation information
typedef growingArray<ConceptWDep> IRInfo;
#endif
protected: // members
/// label of a node
CGLabel Label;
#ifdef RKG_IR_IN_NODE_LABEL
/// inequality relation information respecting current node
IRInfo IR;
#endif
/// Neighbours information
ArcCollection Neighbour;
/// pointer to last saved node
TSaveList<SaveState> saves;
/// ID of node (used in print)
unsigned int id;
/// concept that init the newly created node
BipolarPointer Init;
/// blocker of a node
const DlCompletionTree* Blocker;
/// dep-set for Purge op
DepSet pDep;
// save state information
unsigned int curLevel; // current level
/// is given node a data node
unsigned int flagDataNode : 1;
/// flag if node is Cached
unsigned int cached : 1;
/// flag whether node is permanently/temporarily blocked
unsigned int pBlocked : 1;
/// flag whether node is directly/indirectly blocked
unsigned int dBlocked : 1;
/** Whether node is affected by change of some potential blocker.
This flag may be viewed as a cache for a 'blocked' status
*/
unsigned int affected : 1;
/// the rest
unsigned int unused : 27;
/// level of a nominal node; 0 means blockable one
CTNominalLevel nominalLevel;
private: // methods
/// no copy c'tor
DlCompletionTree ( const DlCompletionTree& copy );
/// no assignment
DlCompletionTree& operator = ( const DlCompletionTree& copy );
protected: // methods
//----------------------------------------------
// blocking support methods
//----------------------------------------------
// sub-methods for optimal blocking
/// check B1 and B2 from optimal blocking for given blocker candidate
bool isCommonlyBlockedBy ( const DLDag& dag, const DlCompletionTree* p ) const;
/// check B3 and B4 from optimal blocking for given blocker candidate
bool isABlockedBy ( const DLDag& dag, const DlCompletionTree* p ) const;
/// check B5 and B6 from optimal blocking for given blocker candidate
bool isCBlockedBy ( const DLDag& dag, const DlCompletionTree* p ) const;
// checking the blocking conditions for optimized blocking
/// check if B1 holds for a given vertex (p is a candidate for blocker)
bool B1 ( const DlCompletionTree* p ) const;
/// check if B2 holds for (AS C) with transitions RST from A[0] using a simple automaton A for S
bool B2Simple ( const RAStateTransitions& RST, BipolarPointer C ) const;
/// check if B2 holds for C=(AS{n} X) with transitions RST from A[n] using a complex automaton A for S
bool B2Complex ( const RAStateTransitions& RST, BipolarPointer C ) const;
/// check if B2 holds for given DL vertex with C=V
bool B2 ( const DLVertex& v, BipolarPointer C ) const
{
# ifdef ENABLE_CHECKING
fpp_assert ( hasParent() ); // safety
# endif
const RAStateTransitions& RST = v.getRole()->getAutomaton()[v.getState()];
if ( v.getRole()->isSimple() )
return B2Simple ( RST, v.getC() );
else
{
if ( RST.empty() ) // no possible applications
return true;
// pointer to current forall
BipolarPointer bp = C - (BipolarPointer)v.getState();
if ( RST.isSingleton() )
return B2Simple ( RST, bp + (BipolarPointer)RST.getTransitionEnd() );
return B2Complex ( RST, bp );
}
}
/// check if B3 holds for (<= n S.C)\in w' (p is a candidate for blocker)
bool B3 ( const DlCompletionTree* p, unsigned int n, const TRole* S, BipolarPointer C ) const;
/// check if B4 holds for (>= m T.E)\in w' (p is a candidate for blocker)
bool B4 ( const DlCompletionTree* p, unsigned int m, const TRole* T, BipolarPointer E ) const;
/// check if B5 holds for (<= n T.E)\in w'
bool B5 ( const TRole* T, BipolarPointer E ) const;
/// check if B6 holds for (>= m U.F)\in v
bool B6 ( const TRole* U, BipolarPointer F ) const;
//----------------------------------------------
// re-building blocking hierarchy
//----------------------------------------------
/// check whether a node can block another one with init concept C
bool canBlockInit ( BipolarPointer C ) const { return C == bpTOP || label().contains(C); }
/// check if all parent arcs are blocked
bool isParentArcIBlocked ( void ) const
{
for ( const_edge_iterator p = begin(); p != end(); ++p )
if ( (*p)->isPredEdge() && !(*p)->isIBlocked() )
return false;
return true;
}
//----------------------------------------------
// Transitive SOME support interface
//----------------------------------------------
/// check if SOME rule is applicable for transitive R
const DlCompletionTree* isTSomeApplicable ( const TRole* R, BipolarPointer C ) const;
/// check if SOME rule is applicable for non-transitive R
const DlCompletionTree* isNSomeApplicable ( const TRole* R, BipolarPointer C ) const;
/// check if transitive R-successor labelled with C
const DlCompletionTree* isTSuccLabelled ( const TRole* R, BipolarPointer C ) const;
/// check if transitive R-predecessor labelled with C; skip FROM node
const DlCompletionTree* isTPredLabelled ( const TRole* R, BipolarPointer C, const DlCompletionTree* from ) const;
//----------------------------------------------
// inequality relation methods
//----------------------------------------------
/// check if the current node is in IR wrt C; if so, write the clash-set to DEP
bool inIRwithC ( const ConceptWDep& C, DepSet& dep ) const;
//----------------------------------------------
// saving/restoring
//----------------------------------------------
/// get current save-level
unsigned int getCurLevel ( void ) const { return curLevel; }
/// save current state to given SS
void save ( SaveState* nss ) const;
/// restore state from given SS; delete SS after
void restore ( SaveState* nss );
//----------------------------------------------
// logging/output
//----------------------------------------------
/// log saving/restoring node
void logSRNode ( const char* action ATTR_UNUSED ) const
{
# if defined(RKG_CHECK_BACKJUMPING)
if ( LLM.isWritable(llSRInfo) )
LL << " " << action << "(" << id << "[" << Neighbour.size() << "]," << getCurLevel() << ")";
# undef RKG_CHECK_BACKJUMPING // it is the only user
# endif
}
/// get letter corresponding to the blocking mode
const char* getBlockingStatusName ( void ) const { return isPBlocked() ? "p" : isDBlocked() ? "d" : isIBlocked() ? "i" : "u"; }
/// log node status (d-,i-,p-blocked or cached
void logNodeBStatus ( std::ostream& o ) const
{
// blocking status information
if ( Blocker )
o << getBlockingStatusName() << Blocker->getId();
if ( isCached() )
o << "c";
}
/// log if node became p-blocked
void logNodeBlocked ( void ) const
{
if ( LLM.isWritable(llGTA) )
{
LL << " " << getBlockingStatusName() << "b(" << id;
if ( Blocker )
LL << "," << Blocker->id;
LL << ")";
}
}
public: // methods
/// init newly created node with starting LEVEL
void init ( unsigned int level );
/// c'tor: create an empty node
DlCompletionTree ( unsigned int newId ) : id(newId) {}
/// d'tor: delete node
~DlCompletionTree ( void ) { saves.clear(); }
/// add given arc P as a neighbour
void addNeighbour ( DlCompletionTreeArc* p ) { Neighbour.push_back(p); }
/// get Node's id
unsigned int getId ( void ) const { return id; }
/// check if the node is cached (IE need not to be expanded)
bool isCached ( void ) const { return cached; }
/// set cached status of given node
TRestorer* setCached ( bool val )
{
if ( cached == val )
return NULL;
TRestorer* ret = new CacheRestorer(this);
cached = val;
return ret;
}
// data node methods
bool isDataNode ( void ) const { return flagDataNode; }
void setDataNode ( void ) { flagDataNode = true; }
// nominal node methods
bool isBlockableNode ( void ) const { return nominalLevel == BlockableLevel; }
bool isNominalNode ( void ) const { return nominalLevel != BlockableLevel; }
bool isNominalNode ( CTNominalLevel level ) const { return nominalLevel == level; }
void setNominalLevel ( void ) { nominalLevel = 0; }
void setNominalLevel ( CTNominalLevel newLevel ) { nominalLevel = newLevel; }
CTNominalLevel getNominalLevel ( void ) const { return nominalLevel; }
/// compare 2 CT nodes wrt their nominal level/status
bool operator < ( const DlCompletionTree& node ) const
{
return ( getNominalLevel() < node.getNominalLevel() ) ||
( ( getNominalLevel() == node.getNominalLevel() ) &&
( getId() < node.getId() ) );
}
/// adds concept P to a label, defined by TAG; update blocked status if necessary
void addConcept ( const ConceptWDep& p, DagTag tag ) { Label.getLabel(tag).add(p); }
/// set the Init concept
void setInit ( BipolarPointer p ) { Init = p; }
//----------------------------------------------
// children/parent access interface
//----------------------------------------------
// neighbour iterators
const_edge_iterator begin ( void ) const { return Neighbour.begin(); }
const_edge_iterator end ( void ) const { return Neighbour.end(); }
edge_iterator begin ( void ) { return Neighbour.begin(); }
edge_iterator end ( void ) { return Neighbour.end(); }
/// return true if node is a non-root; works for reflexive roles
bool hasParent ( void ) const
{
if ( Neighbour.empty() )
return false;
return (*begin())->isPredEdge();
}
//----------------------------------------------
// Transitive SOME support interface
//----------------------------------------------
/// check if SOME rule is applicable; includes transitive SOME support
const DlCompletionTree* isSomeApplicable ( const TRole* R, BipolarPointer C ) const
{ return R->isTransitive() ? isTSomeApplicable(R,C) : isNSomeApplicable(R,C); }
//----------------------------------------------
// Label access interface
//----------------------------------------------
/// RO access to a label
const CGLabel& label ( void ) const { return Label; }
/// RW access to a label
CGLabel& label ( void ) { return Label; }
// label iterators
/// begin() iterator for a label with simple concepts
const_label_iterator beginl_sc ( void ) const { return Label.begin_sc(); }
/// end() iterator for a label with simple concepts
const_label_iterator endl_sc ( void ) const { return Label.end_sc(); }
/// begin() iterator for a label with complex concepts
const_label_iterator beginl_cc ( void ) const { return Label.begin_cc(); }
/// end() iterator for a label with complex concepts
const_label_iterator endl_cc ( void ) const { return Label.end_cc(); }
/// check whether node's label contains P
bool isLabelledBy ( BipolarPointer p ) const { return Label.contains(p); }
//----------------------------------------------
// blocking interface
//----------------------------------------------
// Blocked-By methods for different logics
/// check blocking condition for SH logic
bool isBlockedBy_SH ( const DlCompletionTree* p ) const { return B1(p); }
/// check blocking condition for SHI logic
bool isBlockedBy_SHI ( const DLDag& dag, const DlCompletionTree* p ) const { return isCommonlyBlockedBy ( dag, p ); }
/// check blocking condition for SHIQ logic using optimised blocking
bool isBlockedBy_SHIQ ( const DLDag& dag, const DlCompletionTree* p ) const
{ return isCommonlyBlockedBy ( dag, p ) && ( isCBlockedBy ( dag, p ) || isABlockedBy ( dag, p ) ); }
// WARNING!! works only for blockable nodes
// every non-root node will have first upcoming edge pointed to a parent
/// return RO pointer to the parent node; WARNING: correct only for nodes with hasParent()==TRUE
const DlCompletionTree* getParentNode ( void ) const { return (*begin())->getArcEnd(); }
/// return RW pointer to the parent node; WARNING: correct only for nodes with hasParent()==TRUE
DlCompletionTree* getParentNode ( void ) { return (*begin())->getArcEnd(); }
//----------------------------------------------
// managing AFFECTED flag
//----------------------------------------------
/// check whether node is affected by blocking-related changes
bool isAffected ( void ) const { return affected; }
/// set node (and all subnodes) affected
void setAffected ( void )
{
// don't mark already affected, nominal or p-blocked nodes
if ( isAffected() || isNominalNode() || isPBlocked() )
return;
affected = true;
for ( const_edge_iterator q = begin(), q_end = end(); q < q_end; ++q )
if ( (*q)->isSuccEdge() )
(*q)->getArcEnd()->setAffected();
}
/// clear affected flag
void clearAffected ( void ) { affected = false; }
// just returns calculated values
/// check if node is directly blocked
bool isDBlocked ( void ) const { return Blocker != NULL && !pBlocked && dBlocked; }
/// check if node is indirectly blocked
bool isIBlocked ( void ) const { return Blocker != NULL && !pBlocked && !dBlocked; }
/// check if node is purged (and so indirectly blocked)
bool isPBlocked ( void ) const { return Blocker != NULL && pBlocked && !dBlocked; }
/// check if node is blocked (d/i)
bool isBlocked ( void ) const { return Blocker != NULL && !pBlocked; }
/// check the legality of the direct block
bool isIllegallyDBlocked ( void ) const { return isDBlocked() && Blocker->isBlocked(); }
/// get access to the blocker
const DlCompletionTree* getBlocker ( void ) const { return Blocker; }
/// get RW node to which current one was merged
DlCompletionTree* resolvePBlocker ( void )
{
if ( unlikely(isPBlocked()) )
return const_cast<DlCompletionTree*>(Blocker)->resolvePBlocker();
else
return this;
}
/// get RO node to which current one was merged
const DlCompletionTree* resolvePBlocker ( void ) const
{
if ( unlikely(isPBlocked()) )
return Blocker->resolvePBlocker();
else
return this;
}
/// get node to which current one was merged; fills DEP from pDep's
DlCompletionTree* resolvePBlocker ( DepSet& dep )
{
if ( likely(!isPBlocked()) )
return this;
dep += pDep;
return const_cast<DlCompletionTree*>(Blocker)->resolvePBlocker(dep);
}
/// get purge dep-set of a given node
const DepSet& getPurgeDep ( void ) const { return pDep; }
/// check whether a node can block node P according to it's Init value
bool canBlockInit ( const DlCompletionTree* p ) const { return canBlockInit(p->Init); }
/// check whether the loop between a DBlocked NODE and it's parent blocked contains C
bool isLoopLabelled ( BipolarPointer c )
{
fpp_assert ( isDBlocked() );
if ( Blocker->isLabelledBy(c) )
return true;
int n = 1; // Blocker is the 1st node in the loop
for ( DlCompletionTree* p = getParentNode(); p->hasParent() && p != Blocker; p = p->getParentNode() )
if ( p->isLabelledBy(c) )
return true;
else
++n;
if ( LLM.isWritable(llGTA) )
LL << " loop(" << n << ")";
return false;
}
//----------------------------------------------
// re-building blocking hierarchy
//----------------------------------------------
/// set node blocked
TRestorer* setBlocked ( const DlCompletionTree* blocker, bool permanently, bool directly )
{
TRestorer* ret = new UnBlock(this);
Blocker = blocker;
pBlocked = permanently;
dBlocked = directly;
logNodeBlocked();
return ret;
}
/// mark node d-blocked
TRestorer* setDBlocked ( const DlCompletionTree* blocker ) { return setBlocked ( blocker, false, true ); }
/// mark node i-blocked
TRestorer* setIBlocked ( const DlCompletionTree* blocker ) { return setBlocked ( blocker, false, false ); }
/// mark node unblocked
TRestorer* setUBlocked ( void ) { return setBlocked ( NULL, true, true ); }
/// mark node purged
TRestorer* setPBlocked ( const DlCompletionTree* blocker, const DepSet& dep )
{
TRestorer* ret = new UnBlock(this);
Blocker = blocker;
if ( isNominalNode() )
pDep = dep;
pBlocked = true;
dBlocked = false;
logNodeBlocked();
return ret;
}
//----------------------------------------------
// checking edge labelling
//----------------------------------------------
/// check if edge to NODE is labelled by R; return NULL if does not
DlCompletionTreeArc* getEdgeLabelled ( const TRole* R, const DlCompletionTree* node ) const
{
for ( const_edge_iterator p = begin(), p_end = end(); p < p_end; ++p )
if ( (*p)->getArcEnd() == node && (*p)->isNeighbour(R) )
return *p;
return NULL;
}
/// check if parent arc is labelled by R; works only for blockable nodes
bool isParentArcLabelled ( const TRole* R ) const { return getEdgeLabelled ( R, getParentNode() ) != NULL; }
//----------------------------------------------
// inequality relation interface
//----------------------------------------------
#ifdef RKG_IR_IN_NODE_LABEL
/// init IR with given entry and dep-set; @return true if IR already has this label
bool initIR ( BipolarPointer level, const DepSet& ds )
{
ConceptWDep C(level,ds);
DepSet dummy; // we don't need a clash-set here
if ( inIRwithC ( C, dummy ) )
return true;
IR.add(C);
return false;
}
/// check if the current node is in IR with NODE; if so, write the clash-set to DEP
bool nonMergable ( const DlCompletionTree* node, DepSet& dep ) const;
/// update IR of the current node with IR from NODE and additional dep-set; @return restorer
TRestorer* updateIR ( const DlCompletionTree* node, const DepSet& toAdd );
#endif
//----------------------------------------------
// saving/restoring
//----------------------------------------------
/// check if node needs to be saved
bool needSave ( unsigned int newLevel ) const { return getCurLevel() < newLevel; }
/// save node using internal stack
void save ( unsigned int level )
{
save(saves.push());
curLevel = level;
}
/// restore node from the topmost entry
void restore ( void )
{
fpp_assert ( !saves.empty() );
restore (saves.pop());
}
/// check if node needs to be restored
bool needRestore ( unsigned int restLevel ) const { return getCurLevel() > restLevel; }
/// restore node to given level
void restore ( unsigned int level ) { restore(saves.pop(level)); }
// output
/// log node information (number, i/d blockers, cached)
void logNode ( void ) const { LL << getId(); logNodeBStatus(LL); }
/// print body of the node (without neighbours)
void PrintBody ( std::ostream& o ) const;
}; // DlCompletionTree
/*
* Implementation
*/
inline void DlCompletionTree :: init ( unsigned int level )
{
flagDataNode = false;
nominalLevel = BlockableLevel;
curLevel = level;
cached = false;
affected = true; // every (newly created) node can be blocked
dBlocked = true;
pBlocked = true; // unused flag combination
Label.init();
Init = bpTOP;
// node was used -- clear all previous content
saves.clear();
#ifdef RKG_IR_IN_NODE_LABEL
IR.clear();
#endif
Neighbour.clear();
Blocker = NULL;
pDep.clear();
}
#endif // DLCOMPLETIONTREE_H
|