File: dlTBox.h

package info (click to toggle)
fact%2B%2B 1.6.5~dfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, forky, sid, trixie
  • size: 4,496 kB
  • sloc: cpp: 28,000; java: 22,674; xml: 3,268; makefile: 102; ansic: 61; sh: 3
file content (1298 lines) | stat: -rw-r--r-- 47,275 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
/* This file is part of the FaCT++ DL reasoner
Copyright (C) 2003-2015 Dmitry Tsarkov and The University of Manchester
Copyright (C) 2015-2016 Dmitry Tsarkov

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
*/

#ifndef DLTBOX_H
#define DLTBOX_H

#include <string>
#include <vector>
#include <set>
#include <map>

#include "tConcept.h"
#include "tIndividual.h"
#include "modelCacheSingleton.h"
#include "RoleMaster.h"
#include "LogicFeature.h"
#include "dlDag.h"
#include "ifOptions.h"
#include "PriorityMatrix.h"
#include "tRelated.h"
#include "tNECollection.h"
#include "tAxiomSet.h"
#include "DataTypeCenter.h"
#include "tProgressMonitor.h"
#include "tKBFlags.h"

class DlSatTester;
class Taxonomy;
class DLConceptTaxonomy;
class dumpInterface;
class TSignature;
class SaveLoadManager;

/// enumeration for the reasoner status
enum KBStatus
{
	kbEmpty,		// no axioms loaded yet; not used in TBox
	kbLoading,		// axioms are added to the KB, no preprocessing done
	kbCChecked,		// KB is preprocessed and consistency checked
	kbClassified,	// KB is classified
	kbRealised,		// KB is realised
};

class TBox
{
	friend class DlSatTester;
	friend class NominalReasoner;
	friend class ReasoningKernel;
	friend class TAxiom;	// FIXME!! while TConcept can't get rid of told cycles
	friend class DLConceptTaxonomy;

public:		// type interface
		/// vector of CONCEPT-like elements
	typedef std::vector<TConcept*> ConceptVector;
		/// vector of SINGLETON-like elements
	typedef std::vector<TIndividual*> SingletonVector;
		/// map between names and corresponding module signatures
	typedef std::map<const TNamedEntity*, const TSignature*> NameSigMap;

protected:	// types
		/// type for DISJOINT-like statements
	typedef std::vector<DLTree*> ExpressionArray;
		/// set of concepts together with creation methods
	typedef TNECollection<TConcept> ConceptCollection;
		/// collection of individuals
	typedef TNECollection<TIndividual> IndividualCollection;
		/// type for the array of Related elements
	typedef std::vector<TRelated*> RelatedCollection;
		/// type for a collection of DIFFERENT individuals
	typedef std::vector<SingletonVector> DifferentIndividuals;
		/// type for a A -> C map
	typedef std::map<TConcept*, DLTree*> ConceptDefMap;
		/// type for a set of concepts
	typedef std::set<TConcept*> ConceptSet;

		/// class for simple rules like Ch :- Cb1, Cbi, CbN; all C are primitive named concepts
	class TSimpleRule
	{
	public:		// type interface
			/// type for the rule body
		typedef TBox::ConceptVector TRuleBody;
			/// RW iterator over body
		typedef TRuleBody::iterator iterator;
			/// RO iterator over body
		typedef TRuleBody::const_iterator const_iterator;

	public:		// members
			/// body of the rule
		TRuleBody Body;
			/// head of the rule as a DLTree
		DLTree* tHead;
			/// head of the rule as a BP
		BipolarPointer bpHead;

	private:	// no copy
			/// no copy c'tor
		TSimpleRule ( const TSimpleRule& );
			/// no assignment
		TSimpleRule& operator= ( const TSimpleRule& );

	public:		// interface
			/// init c'tor
		TSimpleRule ( const TRuleBody& body, DLTree* head )
			: Body(body)
			, tHead(head)
			, bpHead(bpINVALID)
			{}
			/// empty d'tor
		virtual ~TSimpleRule ( void ) { deleteTree(tHead); }

		// apply rule -- implementation in Reasoner.h

			/// allow reasoner to check the applicability according to the type of the rule
		virtual bool applicable ( DlSatTester& Reasoner ) const;
	}; // TSimpleRule
		/// all simple rules in KB
	typedef std::vector<TSimpleRule*> TSimpleRules;
		/// R-C cache for the \forall R.C replacement in GCIs
	typedef std::vector<std::pair<DLTree*,TConcept*> > TRCCache;

protected:	// typedefs
		/// RW concept iterator
	typedef ConceptCollection::iterator c_iterator;
		/// RW individual iterator
	typedef IndividualCollection::iterator i_iterator;
		/// RO ExpressionArray iterator
	typedef ExpressionArray::const_iterator ea_iterator;

public:		// interface
		/// RO concept iterator
	typedef ConceptCollection::const_iterator c_const_iterator;
		/// RO individual iterator
	typedef IndividualCollection::const_iterator i_const_iterator;

protected:	// members
		/// relevance label (to determine logical features)
	TLabeller relevance;
		/// DAG of all expressions
	DLDag DLHeap;

		/// reasoner for TBox-related queries w/o nominals
	DlSatTester* stdReasoner;
		/// reasoner for TBox-related queries with nominals
	DlSatTester* nomReasoner;
		/// use this macro to do the same action with all available reasoners
#	define REASONERS_DO(ACT) do {	\
		nomReasoner->ACT;			\
		stdReasoner->ACT; } while(0)

		/// progress monitor
	TProgressMonitor* pMonitor;

		/// vectors for Completely defined, Non-CD and Non-primitive concepts
	ConceptVector arrayCD, arrayNoCD, arrayNP;
		/// taxonomy structure of a TBox
	Taxonomy* pTax;
		/// classifier
	DLConceptTaxonomy* pTaxCreator;
		/// name-signature map
	NameSigMap* pName2Sig;
		/// DataType center
	DataTypeCenter DTCenter;
		/// set of reasoning options
	const ifOptionSet* pOptions;
		/// status of the KB
	KBStatus Status;

		/// global KB features
	LogicFeatures KBFeatures;
		/// GCI features
	LogicFeatures GCIFeatures;
		/// nominal cloud features
	LogicFeatures NCFeatures;
		/// aux features
	LogicFeatures auxFeatures;
		/// pointer to current feature (in case of local ones)
	LogicFeatures* curFeature;

	// auxiliary concepts for Taxonomy

		/// concept representing Top
	TConcept* pTop;
		/// concept representing Bottom
	TConcept* pBottom;
		/// concept representing temporary one that can not be used anywhere in the ontology
	TConcept* pTemp;
		/// temporary concept that represents query
	TConcept* pQuery;

		/// all named concepts
	ConceptCollection Concepts;
		/// all named individuals/nominals
	IndividualCollection Individuals;
		/// "normal" (object) roles
	RoleMaster ORM;
		/// data roles
	RoleMaster DRM;
		/// set of GCIs
	TAxiomSet Axioms;
		/// given individual-individual relations
	RelatedCollection RelatedI;
		/// known disjoint sets of individuals
	DifferentIndividuals Different;
		/// all simple rules in KB
	TSimpleRules SimpleRules;
		/// map to show the possible equivalence between individuals
	std::map<TConcept*, std::pair<TIndividual*,bool> > SameI;
		/// map from A->C for axioms A [= C where A = D is in the TBox
	ConceptDefMap ExtraConceptDefs;

		/// internalisation of a general axioms
	BipolarPointer T_G;
		/// KB flags about GCIs
	TKBFlags GCIs;

		/// cache for the \forall R.C replacements during absorption
	TRCCache RCCache;

		/// maps from concept index to concept itself
	ConceptVector ConceptMap;

		/// number of concepts and individuals; used to set index for modelCache
	unsigned int nC;
		/// number of all distinct roles; used to set index for modelCache
	unsigned int nR;
		/// current aux concept's ID
	unsigned int auxConceptID;
		/// how many times nominals were found during translation to DAG; local to BuildDAG
	unsigned int nNominalReferences;
		/// number of relevant calls to named concepts; local to relevance
	unsigned long nRelevantCCalls;
		/// number of relevant calls to concept expressions; local to relevance
	unsigned long nRelevantBCalls;

		/// searchable stack for the told subsumers
	std::set<TConcept*> CInProcess;
		/// all the synonyms in the told subsumers' cycle
	std::vector<TConcept*> ToldSynonyms;

		/// fairness constraints
	ConceptVector Fairness;

		/// priority matrix for To-Do lists
	ToDoPriorMatrix PriorityMatrix;
		/// single SAT/SUB test timeout in milliseconds
	unsigned long testTimeout;

	//---------------------------------------------------------------------------
	// Reasoner's members: there are many reasoner classes, some members are shared
	//---------------------------------------------------------------------------

		/// flag for switching semantic branching
	bool useSemanticBranching;
		/// flag for switching backjumping
	bool useBackjumping;
		/// whether or not check blocking status as late as possible
	bool useLazyBlocking;
		/// flag for switching between Anywhere and Ancestor blockings
	bool useAnywhereBlocking;
		/// flag to use caching during completion tree construction
	bool useNodeCache;
		/// how many nodes skip before block; work only with FAIRNESS
	int nSkipBeforeBlock;

	//---------------------------------------------------------------------------
	// User-defined flags
	//---------------------------------------------------------------------------

		/// flag for creating taxonomy
	bool useCompletelyDefined;
		/// flag for dumping TBox relevant to query
	bool dumpQuery;
		/// whether or not we need classification. Set up in checkQueryNames()
	bool needClassification;
		/// shall we prefer C=D axioms to C[=E in definition of concepts
	bool alwaysPreferEquals;
		/// use special domains as GCIs
	bool useSpecialDomains;
		/// shall verbose output be used
	bool verboseOutput;

	//---------------------------------------------------------------------------
	// Internally defined flags
	//---------------------------------------------------------------------------

		/// whether we use sorted reasoning; depends on some simplifications
	bool useSortedReasoning;
		/// flag whether TBox is GALEN-like
	bool isLikeGALEN;
		/// flag whether TBox is WINE-like
	bool isLikeWINE;

		/// whether KB is consistent
	bool Consistent;

		/// time spend for preprocessing
	float preprocTime;
		/// time spend for consistency checking
	float consistTime;

private:	// no copy
		/// no copy c'tor
	TBox ( const TBox& );
		/// no assignment
	TBox& operator = ( const TBox& );

protected:	// methods
		/// init all flags using given set of options
	void readConfig ( const ifOptionSet* Options );
		/// initialise Top and Bottom internal concepts
	void initTopBottom ( void );


//-----------------------------------------------------------------------------
//--		internal iterators
//-----------------------------------------------------------------------------

		/// RW begin() for concepts
	c_iterator c_begin ( void ) { return Concepts.begin(); }
		/// RW end() for concepts
	c_iterator c_end ( void ) { return Concepts.end(); }

		/// RW begin() for individuals
	i_iterator i_begin ( void ) { return Individuals.begin(); }
		/// RW end() for individuals
	i_iterator i_end ( void ) { return Individuals.end(); }

//-----------------------------------------------------------------------------
//--		internal ensure*-like interface
//-----------------------------------------------------------------------------

		/// @return concept by given Named Entry ID
	TConcept* toConcept ( TNamedEntry* id ) { return static_cast<TConcept*>(id); }
		/// @return concept by given Named Entry ID
	const TConcept* toConcept ( const TNamedEntry* id ) const { return static_cast<const TConcept*>(id); }
		/// @return individual by given Named Entry ID
	TIndividual* toIndividual ( TNamedEntry* id ) { return static_cast<TIndividual*>(id); }
		/// @return individual by given Named Entry ID
	const TIndividual* toIndividual ( const TNamedEntry* id ) const { return static_cast<const TIndividual*>(id); }

//-----------------------------------------------------------------------------
//--		internal BP-to-concept interface
//-----------------------------------------------------------------------------

		/// set P as a concept corresponding BP
	void setBPforConcept ( BipolarPointer bp, TConcept* p )
	{
		DLHeap[bp].setConcept(p);
		p->pName = bp;
	}

		/// get concept by it's BP (non-const version)
	TDataEntry* getDataEntryByBP ( BipolarPointer bp )
	{
		TDataEntry* p = static_cast<TDataEntry*>(DLHeap[bp].getConcept());
		fpp_assert ( p != NULL );
		return p;
	}
		/// get concept by it's BP (const version)
	const TDataEntry* getDataEntryByBP ( BipolarPointer bp ) const
	{
		const TDataEntry* p = static_cast<const TDataEntry*>(DLHeap[bp].getConcept());
		fpp_assert ( p != NULL );
		return p;
	}


//-----------------------------------------------------------------------------
//--		internal concept building interface
//-----------------------------------------------------------------------------

		/// checks if C is defined as C=D and set Synonyms accordingly
	void checkEarlySynonym ( TConcept* C )
	{
		if ( C->isSynonym() )
			return;	// nothing to do
		if ( C->isPrimitive() )
			return;	// couldn't be a synonym
		if ( !isCN(C->Description) )
			return;	// complex expression -- not a synonym(imm.)

		C->setSynonym(getCI(C->Description));
		C->initToldSubsumers();
	}
		/// make concept C non-primitive with definition DESC; @return it's old description
	DLTree* makeNonPrimitive ( TConcept* C, DLTree* desc )
	{
		DLTree* ret = C->makeNonPrimitive(desc);
		checkEarlySynonym(C);
		return ret;
	}

//-----------------------------------------------------------------------------
//--		support for n-ary predicates
//-----------------------------------------------------------------------------

		/// build a construction in the form AND (\neg q_i)
	template<class Iterator>
	DLTree* buildDisjAux ( Iterator beg, Iterator end )
	{
		DLTree* t = createTop();
		for ( Iterator i = beg; i < end; ++i )
			t = createSNFAnd ( t, createSNFNot(clone(*i)) );
		return t;
	}
		/// process a disjoint set [beg,end) in a usual manner
	template<class Iterator>
	void processDisjoint ( Iterator beg, Iterator end )
	{
		for ( Iterator i = beg; i < end; ++i )
			addSubsumeAxiom ( *i, buildDisjAux ( i+1, end ) );
	}
//-----------------------------------------------------------------------------
//--		internal DAG building methods
//-----------------------------------------------------------------------------

		/// build a DAG-structure for concepts and axioms
	void buildDAG ( void );

		/// translate concept P (together with definition) to DAG representation
	void addConceptToHeap ( TConcept* p );
		/// register data-related expression in the DAG; @return it's DAG index
	BipolarPointer addDataExprToHeap ( TDataEntry* p );
		/// builds DAG entry by general concept expression
	BipolarPointer tree2dag ( const DLTree* );
		/// create forall node (together with transitive sub-roles entries)
	BipolarPointer forall2dag ( const TRole* R, BipolarPointer C );
		/// create atmost node (together with NN-rule entries)
	BipolarPointer atmost2dag ( unsigned int n, const TRole* R, BipolarPointer C );
		/// create REFLEXIVE node
	BipolarPointer reflexive2dag ( const TRole* R )
	{
		// input check: only simple roles are allowed in the reflexivity construction
		if ( !R->isSimple() )
			throw EFPPNonSimpleRole(R->getName());
		return inverse ( DLHeap.add ( new DLVertex ( dtIrr, R ) ) );
	}
		/// create node for AND expression T
	BipolarPointer and2dag ( const DLTree* t );
		/// add elements of T to and-like vertex V; @return true if clash occures
	bool fillANDVertex ( DLVertex* v, const DLTree* t );
		/// create forall node for data role
	BipolarPointer dataForall2dag ( const TRole* R, BipolarPointer C )
		{ return DLHeap.add ( new DLVertex ( dtForall, 0, R, C ) ); }
		/// create atmost node for data role
	BipolarPointer dataAtMost2dag ( unsigned int n, const TRole* R, BipolarPointer C )
		{ return DLHeap.add ( new DLVertex ( dtLE, n, R, C ) ); }
		/// @return a pointer to concept representation
	BipolarPointer concept2dag ( TConcept* p )
	{
		if ( p == NULL )
			return bpINVALID;
		if ( !isValid(p->pName) )
			addConceptToHeap(p);
		return p->resolveId();
	}

//-----------------------------------------------------------------------------
//--		internal parser (input) interface
//-----------------------------------------------------------------------------

		/// set the flag that forbid usage of undefined names for concepts/roles; @return old value
	bool setForbidUndefinedNames ( bool val )
	{
		ORM.setUndefinedNames(!val);
		DRM.setUndefinedNames(!val);
		Individuals.setLocked(val);
		return Concepts.setLocked(val);
	}
		/// tries to apply axiom C [= CN; @return NULL if applicable or new CN
	DLTree* applyAxiomCToCN ( DLTree* C, DLTree* CN );
		/// tries to apply axiom CN [= C; @return NULL if applicable or new CN
	DLTree* applyAxiomCNToC ( DLTree* CN, DLTree* C );
		/// tries to add C = RHS for the concept C; @return true if OK
	bool addNonprimitiveDefinition ( TConcept* C, DLTree* rhs );
		/// tries to add C = RHS for the concept C [= X; @return true if OK
	bool switchToNonprimitive ( TConcept* C, DLTree* rhs );
		/// transform definition C=D' with C [= E into C [= (D' and E) with D [= C
		/// D is usually D', but see addSubsumeForDefined()
	void makeDefinitionPrimitive ( TConcept* C, DLTree* E, DLTree* D )
	{
		C->setPrimitive();	// now we have C [= D'
		C->addDesc(E);		// here C [= (D' and E)
		C->initToldSubsumers();
		// all we need is to add (old C's desc)D [= C
		addSubsumeAxiom ( D, getTree(C) );
	}

	// for complex Concept operations
		/// try to absorb GCI C[=D; if not possible, just record this GCI
	void processGCI ( DLTree* C, DLTree* D ) { Axioms.addAxiom ( C, D ); }

	// recognize Range/Domain restriction in an axiom and transform it into role R&D.
	// return true if transformation was performed
	bool axiomToRangeDomain ( DLTree* l, DLTree* r );

		/// @return true if BP represents a named entry in a DAG
	bool isNamedConcept ( BipolarPointer bp ) const
	{
		DagTag tag = DLHeap[bp].Type();
		return isCNameTag(tag) || tag == dtDataType || tag == dtDataValue;
	}

		/// get aux concept obtained from C=\AR.~D by forall replacement
	TConcept* getRCCache ( const DLTree* C ) const
	{
		for ( TRCCache::const_iterator p = RCCache.begin(), p_end = RCCache.end(); p < p_end; ++p )
			if ( equalTrees ( C, p->first ) )
				return p->second;
		return NULL;
	}
		/// add CN as a cache entry for C=\AR.~D>
	void setRCCache ( DLTree* C, TConcept* CN ) { RCCache.push_back(std::make_pair(C,CN)); }

		/// check if TBox contains too many GCIs to switch strategy
	bool isGalenLikeTBox ( void ) const { return isLikeGALEN; }
		/// check if TBox contains too many nominals and GCIs to switch strategy
	bool isWineLikeTBox ( void ) const { return isLikeWINE; }

//-----------------------------------------------------------------------------
//--		internal preprocessing methods
//-----------------------------------------------------------------------------

		/// build a roles taxonomy and a DAG
	void Preprocess ( void );
		/// transform C [= D with C = E into GCIs
	void TransformExtraSubsumptions ( void );
		/// absorb all axioms
	void AbsorbAxioms ( void )
	{
		unsigned int nSynonyms = countSynonyms();
		Axioms.absorb();
		if ( countSynonyms() > nSynonyms )
			replaceAllSynonyms();
		if ( Axioms.wasRoleAbsorptionApplied() )
			initToldSubsumers();
	}

		/// pre-process RELATED axioms: resolve synonyms, mark individuals as related
	void preprocessRelated ( void );
		/// determine all sorts in KB (make job only for SORTED_REASONING)
	void determineSorts ( void );

		/// calculate statistic for DAG and Roles
	void CalculateStatistic ( void );
		/// Remove DLTree* from TConcept after DAG is constructed
	void RemoveExtraDescriptions ( void );

		/// init Range and Domain for all roles of RM; sets hasGCI if R&D was found
	void initRangeDomain ( RoleMaster& RM );

		/// set told TOP concept whether necessary
	void initToldSubsumers ( void )
	{
		for ( c_iterator pc = c_begin(); pc != c_end(); ++pc )
			if ( !(*pc)->isSynonym() )
				(*pc)->initToldSubsumers();
		for ( i_iterator pi = i_begin(); pi != i_end(); ++pi )
			if ( !(*pi)->isSynonym() )
				(*pi)->initToldSubsumers();
	}
		/// set told TOP concept whether necessary
	void setToldTop ( void )
	{
		TConcept* top = const_cast<TConcept*>(pTop);
		for ( c_iterator pc = c_begin(); pc != c_end(); ++pc )
			(*pc)->setToldTop(top);
		for ( i_iterator pi = i_begin(); pi != i_end(); ++pi )
			(*pi)->setToldTop(top);
	}
		/// calculate TS depth for all concepts
	void calculateTSDepth ( void )
	{
		for ( c_iterator pc = c_begin(); pc != c_end(); ++pc )
			(*pc)->calculateTSDepth();
		for ( i_iterator pi = i_begin(); pi != i_end(); ++pi )
			(*pi)->calculateTSDepth();
	}

		/// find referential cycles (like A [= (and B C), B [= A) and transform them to synonyms (B=A, A[=C)
	void transformToldCycles ( void );
		/// check if P appears in referential cycle;
		/// @return concept which creates cycle, NULL if no such concept exists.
	TConcept* checkToldCycle ( TConcept* p );
		/// transform i [= C [= j into i=C=j for i,j nominals
	void transformSingletonHierarchy ( void );
		/// make P and all its non-singleton parents synonyms to its singleton parent; @return that singleton
	TIndividual* transformSingletonWithSP ( TConcept* p );
		/// helper to the previous function
	TIndividual* getSPForConcept ( TConcept* p );

		/// @return true if C is referenced in TREE; use PROCESSED to record explored names
	bool isReferenced ( TConcept* C, DLTree* tree, ConceptSet& processed );
		/// @return true if C is referenced in the definition of concept D; use PROCESSED to record explored names
	bool isReferenced ( TConcept* C, TConcept* D, ConceptSet& processed )
	{
		// mark D as processed
		processed.insert(D);
		// check the description of D
		if ( D->Description == NULL )
			return false;
		if ( isReferenced ( C, D->Description, processed ) )
			return true;
		// we are done for primitive concepts
		if ( D->isPrimitive() )
			return false;
		// check if D has an extra description
		ConceptDefMap::iterator p = ExtraConceptDefs.find(D);
		if ( p != ExtraConceptDefs.end() )
			return isReferenced ( C, p->second, processed );
		return false;
	}

		/// @return number of synonyms in the KB
	unsigned int countSynonyms ( void ) const
	{
		unsigned int nSynonyms = 0;
		for ( c_const_iterator pc = c_begin(); pc != c_end(); ++pc )
			if ( (*pc)->isSynonym() )
				++nSynonyms;

		for ( i_const_iterator pi = i_begin(); pi != i_end(); ++pi )
			if ( (*pi)->isSynonym() )
				++nSynonyms;
		return nSynonyms;
	}
		/// replace all synonyms in concept descriptions with their definitions
	void replaceAllSynonyms ( void );

		/// init Extra Rule field in concepts given by a vector V with a given INDEX
	inline void
	initRuleFields ( const ConceptVector& v, size_t index ) const
	{
		for ( ConceptVector::const_iterator q = v.begin(), q_end = v.end(); q < q_end; ++q )
			(*q)->addExtraRule(index);
	}
		/// mark all concepts wrt their classification tag
	void fillsClassificationTag ( void )
	{
		for ( c_const_iterator pc = c_begin(); pc != c_end(); ++pc )
			(*pc)->getClassTag();
		for ( i_const_iterator pi = i_begin(); pi != i_end(); ++pi )
			(*pi)->getClassTag();
	}
		/// set new concept index for given C wrt existing nC
	void setConceptIndex ( TConcept* C )
	{
		C->setIndex(nC);
		ConceptMap.push_back(C);
		++nC;
	}
		/// set index on all classifiable entries
	void setAllIndexes ( void );

//-----------------------------------------------------------------------------
//--		internal reasoner-related interface
//-----------------------------------------------------------------------------

		/// @return true iff reasoners were initialised
	bool reasonersInited ( void ) const { return stdReasoner != NULL; }
		/// get RW reasoner wrt nominal case
	DlSatTester* getReasoner ( void )
	{
		fpp_assert ( curFeature != NULL );
		if ( curFeature->hasSingletons() )
			return nomReasoner;
		else
			return stdReasoner;
	}
		/// get RO reasoner wrt nominal case
	const DlSatTester* getReasoner ( void ) const
	{
		fpp_assert ( curFeature != NULL );
		if ( curFeature->hasSingletons() )
			return nomReasoner;
		else
			return stdReasoner;
	}
		/// check whether KB is consistent; @return true if it is
	bool performConsistencyCheck ( void );	// implemented in Reasoner.h

//-----------------------------------------------------------------------------
//--		internal reasoning interface
//-----------------------------------------------------------------------------

		/// init reasoning service: create reasoner(s)
	void initReasoner ( void );				// implemented in Reasoner.h
		/// init taxonomy and classifier
	void initTaxonomy ( void );				// implemented in DLConceptTaxonomy.h
		/// set NameSigMap
	void setNameSigMap ( NameSigMap* p ) { pName2Sig = p; }
		/// creating taxonomy for given TBox; include individuals if necessary
	void createTaxonomy ( bool needIndividuals );
		/// distribute all elements in [begin,end) range wtr theif tags
	template<class Iterator>
	unsigned int fillArrays ( Iterator begin, Iterator end )
	{
		unsigned int n = 0;
		for ( Iterator p = begin; p < end; ++p )
		{
			if ( (*p)->isNonClassifiable() )
				continue;
			++n;
			switch ( (*p)->getClassTag() )
			{
				case cttTrueCompletelyDefined:
					arrayCD.push_back(*p);
					break;
				default:
					arrayNoCD.push_back(*p);
					break;
				case cttNonPrimitive:
				case cttHasNonPrimitiveTS:
					arrayNP.push_back(*p);
					break;
			}
		}

		return n;
	}
		/// classify all concepts from given COLLECTION with given CD value
	void classifyConcepts ( const ConceptVector& collection, bool curCompletelyDefined, const char* type );
		/// classify single concept
	void classifyEntry ( TConcept* entry );

//-----------------------------------------------------------------------------
//--		internal cache-related methods
//-----------------------------------------------------------------------------

		/// init const cache for either bpTOP or bpBOTTOM
	void initConstCache ( BipolarPointer p ) { DLHeap.setCache ( p, createConstCache(p) ); }
		/// init [singleton] cache for given concept and polarity
	void initSingletonCache ( const TConcept* p, bool pos )
		{ DLHeap.setCache ( createBiPointer(p->pName,pos), new modelCacheSingleton(createBiPointer(p->index(),pos)) ); }
		/// create cache for ~C where C is a primitive concept (as it is simple)
	void buildSimpleCache ( void );

//-----------------------------------------------------------------------------
//--		internal output helper methods
//-----------------------------------------------------------------------------

	void PrintDagEntry ( std::ostream& o, BipolarPointer p ) const;
		/// print one concept-like entry
	void PrintConcept ( std::ostream& o, const TConcept* p ) const;
		/// print all registered concepts
	void PrintConcepts ( std::ostream& o ) const
	{
		if ( Concepts.size() == 0 )
			return;
		o << "Concepts (" << Concepts.size() << "):\n";
		for ( c_const_iterator pc = c_begin(); pc != c_end(); ++pc )
			PrintConcept(o,*pc);
	}
		/// print all registered individuals
	void PrintIndividuals ( std::ostream& o ) const
	{
		if ( Individuals.size() == 0 )
			return;
		o << "Individuals (" << Individuals.size() << "):\n";
		for ( i_const_iterator pi = i_begin(); pi != i_end(); ++pi )
			PrintConcept(o,*pi);
	}
	void PrintSimpleRules ( std::ostream& o ) const
	{
		if ( SimpleRules.empty() )
			return;
		o << "Simple rules (" << SimpleRules.size() << "):\n";
		for ( TSimpleRules::const_iterator p = SimpleRules.begin(); p < SimpleRules.end(); ++p )
		{
			ConceptVector::const_iterator q = (*p)->Body.begin(), q_end = (*p)->Body.end();
			o << "(" << (*q)->getName();
			while ( ++q < q_end )
				o << ", " << (*q)->getName();
			o << ") => " << (*p)->tHead << "\n";
		}
	}
	void PrintAxioms ( std::ostream& o ) const
	{
		if ( T_G == bpTOP )
			return;
		o << "Axioms:\nT [=";
		PrintDagEntry ( o, T_G );
	}
		/// print KB features to LL
	void printFeatures ( void ) const;

//-----------------------------------------------------------------------------
//--		 save/load support; implementation in SaveLoad.cpp
//-----------------------------------------------------------------------------

//-----------------------------------------------------------------------------
//--		internal relevance helper methods
//-----------------------------------------------------------------------------
		/// is given concept relevant wrt current TBox
	bool isRelevant ( const TConcept* p ) const { return p->isRelevant(relevance); }
		/// set given concept relevant wrt current TBox
	void setRelevant1 ( TConcept* p );
		/// set given concept relevant wrt current TBox if not checked yet
	void setRelevant ( TConcept* p ) { if ( !isRelevant(p) ) setRelevant1(p); }

		/// is given role relevant wrt current TBox
	bool isRelevant ( const TRole* p ) const { return p->isRelevant(relevance); }
		/// set given role relevant wrt current TBox
	void setRelevant1 ( TRole* p );
		/// set given role relevant wrt current TBox if not checked yet
	void setRelevant ( TRole* p )
	{
		if ( ( likely(p->getId() != 0) || p->isTop() ) && !isRelevant(p) )
			setRelevant1(p);
	}

		/// set given DAG entry relevant wrt current TBox
	void setRelevant ( BipolarPointer p );

		/// gather information about logical features of relevant concept
	void collectLogicFeature ( const TConcept* p ) const
	{
		if ( curFeature )
			curFeature->fillConceptData(p);
	}
		/// gather information about logical features of relevant role
	void collectLogicFeature ( const TRole* p ) const
	{
		if ( curFeature )	// update features w.r.t. current concept
			curFeature->fillRoleData ( p, isRelevant(p->inverse()) );
	}
		/// gather information about logical features of relevant DAG entry
	void collectLogicFeature ( const DLVertex& v, bool pos ) const
	{
		if ( curFeature )
			curFeature->fillDAGData ( v, pos );
	}
		/// mark all active GCIs relevant
	void markGCIsRelevant ( void ) { setRelevant(T_G); }

//-----------------------------------------------------------------------------
//--		internal relevance interface
//-----------------------------------------------------------------------------
		/// set all TBox content (namely, concepts and GCIs) relevant
	void markAllRelevant ( void )
	{
		for ( c_iterator pc = c_begin(); pc != c_end(); ++pc )
			setRelevant(*pc);
		for ( i_iterator pi = i_begin(); pi != i_end(); ++pi )
			setRelevant(*pi);

		markGCIsRelevant();
	}
		/// mark chosen part of TBox (P, Q and GCIs) relevant
	void calculateRelevant ( TConcept* p, TConcept* q )
	{
		setRelevant(p);
		if ( q != NULL )
			setRelevant(q);
		markGCIsRelevant();
	}
		/// clear all relevance info
	void clearRelevanceInfo ( void ) { relevance.newLabel(); }
		/// gather relevance statistic for the whole KB
	void gatherRelevanceInfo ( void );
		/// put relevance information to a concept's data
	void setConceptRelevant ( TConcept* p )
	{
		curFeature = &p->posFeatures;
		setRelevant(p->pBody);
		KBFeatures |= p->posFeatures;
		collectLogicFeature(p);
		clearRelevanceInfo();

		// nothing to do for neg-prim concepts
		if ( p->isPrimitive() )
			return;

		curFeature = &p->negFeatures;
		setRelevant(inverse(p->pBody));
		KBFeatures |= p->negFeatures;
		clearRelevanceInfo();
	}
		/// update AUX features with the given one; update roles if necessary
	void updateAuxFeatures ( const LogicFeatures& lf )
	{
		if ( !lf.empty() )
		{
			auxFeatures |= lf;
			auxFeatures.mergeRoles();
		}
	}
		/// prepare features for SAT(P), or SUB(P,Q) test
	void prepareFeatures ( const TConcept* pConcept, const TConcept* qConcept );
		/// clear current features
	void clearFeatures ( void ) { curFeature = NULL; }

//-----------------------------------------------------------------------------
//--		internal dump output interface
//-----------------------------------------------------------------------------
		/// dump concept-like essence using given dump method
	void dumpConcept ( dumpInterface* dump, const TConcept* p ) const;
		/// dump role-like essence using given dump method
	void dumpRole ( dumpInterface* dump, const TRole* p ) const;
		/// dump general concept expression using given dump method
	void dumpExpression ( dumpInterface* dump, BipolarPointer p ) const;
		/// dump all (relevant) roles
	void dumpAllRoles ( dumpInterface* dump ) const;

//-----------------------------------------------------------------------------
//--		internal save/load interface; implementation in SaveLoad.cpp
//-----------------------------------------------------------------------------

		/// init pointer2int maps
	void initPointerMaps ( SaveLoadManager& m ) const;

public:
		/// init c'tor
	TBox ( const ifOptionSet* Options,
		   const std::string& TopORoleName,
		   const std::string& BotORoleName,
		   const std::string& TopDRoleName,
		   const std::string& BotDRoleName );
		/// d'tor
	~TBox ( void );

		/// get RW access to used Role Master
	RoleMaster* getORM ( void ) { return &ORM; }
		/// get RO access to used Role Master
	const RoleMaster* getORM ( void ) const { return &ORM; }
		/// get RW access to used DataRole Master
	RoleMaster* getDRM ( void ) { return &DRM; }
		/// get RO access to used DataRole Master
	const RoleMaster* getDRM ( void ) const { return &DRM; }
		/// get RW access to the RoleMaster depending of the R
	RoleMaster* getRM ( const TRole* R ) { return R->isDataRole() ? getDRM() : getORM(); }
		/// get RO access to the RoleMaster depending of the R
	const RoleMaster* getRM ( const TRole* R ) const { return R->isDataRole() ? getDRM() : getORM(); }
		/// get RW access to a DT center
	DataTypeCenter& getDataTypeCenter ( void ) { return DTCenter; }
		/// get RO access to a DT center
	const DataTypeCenter& getDataTypeCenter ( void ) const { return DTCenter; }
		/// get RO access to DAG (needed for KE)
	const DLDag& getDag ( void ) const { return DLHeap; }

		/// set the value of a test timeout in milliseconds to VALUE
	void setTestTimeout ( unsigned long value ) { testTimeout = value; }
		/// (dis-)allow reasoner to use the undefined names in queries
	void setUseUndefinedNames ( bool value ) { Concepts.setAllowFresh(value); }
		/// set flag to use node cache to value VAL
	void setUseNodeCache ( bool val ) { useNodeCache = val; }

//-----------------------------------------------------------------------------
//--		public parser ensure* interface
//-----------------------------------------------------------------------------

		/// return registered concept by given NAME; @return NULL if can't register
	TConcept* getConcept ( const std::string& name ) { return Concepts.get(name); }
		/// return registered individual by given NAME; @return NULL if can't register
	TIndividual* getIndividual ( const std::string& name ) { return Individuals.get(name); }

		/// @return true iff given NAME is a name of a registered individual
	bool isIndividual ( const std::string& name ) const { return Individuals.isRegistered(name); }
		/// @return true iff given ENTRY is a registered individual
	bool isIndividual ( const TNamedEntry* entry ) const { return isIndividual(entry->getName()); }
		/// @return true iff given TREE represents a registered individual
	bool isIndividual ( const DLTree* tree ) const
		{ return (tree->Element().getToken() == INAME && isIndividual(tree->Element().getNE())); }
		/// @return true iff given DLTree represents a data value
	static bool isDataValue ( const DLTree* entry )
	{
		return entry->Element().getToken() == DATAEXPR &&
			static_cast<const TDataEntry*>(entry->Element().getNE())->isDataValue();
	}

		/// get TOP/BOTTOM/CN/IN by the DLTree entry
	TConcept* getCI ( const DLTree* name )
	{
		if ( name->Element() == TOP )
			return pTop;
		if ( name->Element() == BOTTOM )
			return pBottom;

		if ( !isName(name) )
			return NULL;

		if ( name->Element().getToken() == CNAME )
			return toConcept(name->Element().getNE());
		else
			return toIndividual(name->Element().getNE());
	}
		/// get a DL tree by a given concept-like C
	DLTree* getTree ( TConcept* C ) const
	{
		if ( C == NULL )
			return NULL;
		if ( C == pTop )
			return createTop();
		if ( C == pBottom )
			return createBottom();
		return createEntry ( isIndividual(C) ? INAME : CNAME, C );
	}
		/// get fresh concept
	DLTree* getFreshConcept ( void ) const { return createEntry ( CNAME, pTemp ); }

	// n-ary absorption support

		/// get unique aux concept
	TConcept* getAuxConcept ( DLTree* desc = NULL );
		/// replace RC=(AR:~C) with X such that C [= AR^-:X for fresh X. @return X
	TConcept* replaceForall ( DLTree* RC );
		/// @return true iff C has a cyclic definition, ie is referenced in its own description
	bool isCyclic ( TConcept* C )
	{
		ConceptSet processed;
		return isReferenced ( C, C, processed );
	}

//-----------------------------------------------------------------------------
//--		public input axiom interface
//-----------------------------------------------------------------------------

		/// register individual relation <a,b>:R
	void RegisterIndividualRelation ( TNamedEntry* a, TNamedEntry* R, TNamedEntry* b )
	{
		if ( !isIndividual(a) || !isIndividual(b) )
			throw EFaCTPlusPlus("Individual expected in related()");
		RelatedI.push_back ( new
			TRelated ( toIndividual(a),
					   toIndividual(b),
					   static_cast<TRole*>(R) ) );
		RelatedI.push_back ( new
			TRelated ( toIndividual(b),
					   toIndividual(a),
					   static_cast<TRole*>(R)->inverse() ) );
	}

		/// add general subsumption axiom C [= D
	void addSubsumeAxiom ( DLTree* C, DLTree* D );
		/// add axiom CN [= D for concept CN
	void addSubsumeAxiom ( TConcept* C, DLTree* D ) { addSubsumeAxiom ( getTree(C), D ); }
		/// add an axiom CN [= E for defined CN (CN=D already in base)
	void addSubsumeForDefined ( TConcept* C, DLTree* E );
		/// add an axiom LHS = RHS
	void addEqualityAxiom ( DLTree* lhs, DLTree* rhs );

		/// add simple rule RULE to the TBox' rules
	inline
	void addSimpleRule ( TSimpleRule* Rule )
	{
		initRuleFields ( Rule->Body, SimpleRules.size() );
		SimpleRules.push_back(Rule);
	}
		/// add binary simple rule (C0,C1)=>H
	void addBSimpleRule ( TConcept* C0, TConcept* C1, DLTree* H )
	{
		ConceptVector v;
		v.push_back(C0);
		v.push_back(C1);
		addSimpleRule ( new TSimpleRule ( v, H ) );
	}

	// external-set methods for set-of-concept-expressions
	void processEquivalentC ( ea_iterator beg, ea_iterator end );
	void processDisjointC ( ea_iterator beg, ea_iterator end );
	void processEquivalentR ( ea_iterator beg, ea_iterator end );
	void processDisjointR ( ea_iterator beg, ea_iterator end );
	void processSame ( ea_iterator beg, ea_iterator end );
	void processDifferent ( ea_iterator beg, ea_iterator end );

		/// let TBox know that the whole ontology is loaded
	void finishLoading ( void ) { setForbidUndefinedNames(true); }
		/// @return true if KB contains fairness constraints
	bool hasFC ( void ) const { return !Fairness.empty(); }
		/// add concept expression C as a fairness constraint
	void setFairnessConstraint ( ea_iterator beg, ea_iterator end )
	{
		for ( ; beg < end; ++beg )
			if ( isName(*beg) )
			{
				Fairness.push_back(getCI(*beg));
				deleteTree(*beg);
			}
			else
			{
				// build a flag for a FC
				TConcept* fc = getAuxConcept();
				Fairness.push_back(fc);
				// make an axiom: FC = C
				addEqualityAxiom ( getTree(fc), *beg );
			}
		// in presence of fairness constraints use ancestor blocking
		if ( useAnywhereBlocking && hasFC() )
		{
			useAnywhereBlocking = false;
			if ( LLM.isWritable(llAlways) )
				LL << "\nFairness constraints: set useAnywhereBlocking = 0";
		}
	}

//-----------------------------------------------------------------------------
//--		public access interface
//-----------------------------------------------------------------------------

		/// GCI Axioms access
	BipolarPointer getTG ( void ) const { return T_G; }
		/// get simple rule by its INDEX
	const TSimpleRule* getSimpleRule ( size_t index ) const { return SimpleRules[index]; }

		/// check if the relevant part of KB contains inverse roles.
	bool isIRinQuery ( void ) const
	{
		if ( curFeature != NULL )
			return curFeature->hasInverseRole();
		else
			return KBFeatures.hasInverseRole();
	}
		/// check if the relevant part of KB contains number restrictions.
	bool isNRinQuery ( void ) const
	{
		const LogicFeatures* p = curFeature ? curFeature : &KBFeatures;
		return p->hasFunctionalRestriction() || p->hasNumberRestriction() || p->hasQNumberRestriction();
	}
		/// check if the relevant part of KB contains singletons
	bool testHasNominals ( void ) const
	{
		if ( curFeature != NULL )
			return curFeature->hasSingletons();
		else
			return KBFeatures.hasSingletons();
	}
		/// check if the relevant part of KB contains top role
	bool testHasTopRole ( void ) const
	{
		if ( curFeature != NULL )
			return curFeature->hasTopRole();
		else
			return KBFeatures.hasTopRole();
	}
		/// check if Sorted Reasoning is applicable
	bool canUseSortedReasoning ( void ) const
		{ return useSortedReasoning && !GCIs.isGCI() && !GCIs.isReflexive(); }

		/// @return true iff individual C is known to be p-blocked by another one
	bool isBlockedInd ( TConcept* C ) const { return SameI.find(C) != SameI.end(); }
		/// get individual that blocks C; works only for blocked individuals C
	TIndividual* getBlockingInd ( TConcept* C ) const { return SameI.find(C)->second.first; }
		/// @return true iff an individual blocks C deterministically
	bool isBlockingDet ( TConcept* C ) const { return SameI.find(C)->second.second; }

//-----------------------------------------------------------------------------
//--		public iterators
//-----------------------------------------------------------------------------

		/// RO begin() for concepts
	c_const_iterator c_begin ( void ) const { return Concepts.begin(); }
		/// RO end() for concepts
	c_const_iterator c_end ( void ) const { return Concepts.end(); }

		/// RO begin() for individuals
	i_const_iterator i_begin ( void ) const { return Individuals.begin(); }
		/// RO end() for individuals
	i_const_iterator i_end ( void ) const { return Individuals.end(); }

//-----------------------------------------------------------------------------
//--		public reasoning interface
//-----------------------------------------------------------------------------
		/// prepare to reasoning
	void prepareReasoning ( void );
		/// perform classification (assuming KB is consistent)
	void performClassification ( void ) { createTaxonomy ( /*needIndividuals=*/false ); }
		/// perform realisation (assuming KB is consistent)
	void performRealisation ( void ) { createTaxonomy ( /*needIndividuals=*/true ); }
		/// reclassify taxonomy wrt changed sets
	void reclassify ( const std::set<const TNamedEntity*>& MPlus, const std::set<const TNamedEntity*>& MMinus );

		/// get (READ-WRITE) access to internal Taxonomy of concepts
	Taxonomy* getTaxonomy ( void ) { return pTax; }

		/// set given structure as a progress monitor
	void setProgressMonitor ( TProgressMonitor* pMon ) { pMonitor = pMon; }
		/// check that reasoning progress was cancelled by external application
	bool isCancelled ( void ) const { return pMonitor != NULL && pMonitor->isCancelled(); }
		/// set verbose output (ie, default progress monitor, concept and role taxonomies) wrt given VALUE
	void setVerboseOutput ( bool value ) { verboseOutput = value; }

		/// create (and DAG-ify) query concept via its definition
	TConcept* createQueryConcept ( const DLTree* query );
		/// preprocess query concept: put description into DAG
	void preprocessQueryConcept ( TConcept* query );
		/// classify query concept
	void classifyQueryConcept ( void );
		/// delete all query-related stuff
	void clearQueryConcept ( void ) { DLHeap.removeQuery(); }
		/// @return true if the concept in question is a query concept
	bool isComplexQuery ( const TConcept* queryConcept ) const { return queryConcept == pQuery; }

//-----------------------------------------------------------------------------
//--		public reasoning interface
//-----------------------------------------------------------------------------

		/// get status flag
	KBStatus getStatus ( void ) const { return Status; }
		/// set consistency flag
	void setConsistency ( bool val )
	{
		Status = kbCChecked;
		Consistent = val;
	}
		/// check if the ontology is consistent
	bool isConsistent ( void )
	{
		if ( Status < kbCChecked )
		{
			prepareReasoning();
			if ( Status < kbCChecked && Consistent )	// we can detect inconsistency during preprocessing
				setConsistency(performConsistencyCheck());
		}
		return Consistent;
	}
		/// check if a subsumption C [= D holds
	bool isSubHolds ( const TConcept* C, const TConcept* D );
		/// check if a concept C is satisfiable
	bool isSatisfiable ( const TConcept* C );
		/// check that 2 individuals are the same
	bool isSameIndividuals ( const TIndividual* a, const TIndividual* b );
		/// check if 2 roles are disjoint
	bool isDisjointRoles ( const TRole* R, const TRole* S );
		/// check if the role R is irreflexive
	bool isIrreflexive ( const TRole* R );

		/// fills cache entry for given concept; SUB means that the concept is on the right side of a subsumption test
	const modelCacheInterface* initCache ( const TConcept* pConcept, bool sub = false );

		/// build a completion tree for a concept C (no caching as it breaks the idea of KE). @return the root node
	const DlCompletionTree* buildCompletionTree ( const TConcept* C );

		/// test if 2 concept non-subsumption can be determined by cache merging
	enum modelCacheState testCachedNonSubsumption ( const TConcept* p, const TConcept* q );
		/// test if 2 concept non-subsumption can be determined by sorts checking
	bool testSortedNonSubsumption ( const TConcept* p, const TConcept* q )
	{
		// sorted reasoning doesn't work in presence of GCIs
		if ( !canUseSortedReasoning() )
			return false;
		// doesn't work for the SAT tests
		if ( q == NULL )
			return false;
		return !DLHeap.haveSameSort ( p->pName, q->pName );
	}
//-----------------------------------------------------------------------------
//--		public output interface
//-----------------------------------------------------------------------------

		/// dump query processing TIME, reasoning statistics and a (preprocessed) TBox
	void writeReasoningResult ( std::ostream& o, float time ) const;
		/// print TBox as a whole
	void Print ( std::ostream& o ) const
	{
		DLHeap.PrintStat(o);
		ORM.Print ( o, "Object" );
		DRM.Print ( o, "Data" );
		PrintConcepts(o);
		PrintIndividuals(o);
		PrintSimpleRules(o);
		PrintAxioms(o);
		DLHeap.Print(o);
	}

		/// create dump of relevant part of query using given method
	void dump ( dumpInterface* dump ) const;

//-----------------------------------------------------------------------------
//--		 save/load interface; implementation in SaveLoad.cpp
//-----------------------------------------------------------------------------

		/// save the KB into the given stream
	void Save ( SaveLoadManager& m );
		/// load the KB from given stream wrt STATUS
	void Load ( SaveLoadManager& m, KBStatus status );
		/// save taxonomy with names (used in the incremental)
	void SaveTaxonomy ( SaveLoadManager& m, const std::set<const TNamedEntry*>& excluded );
		/// load taxonomy with names (used in the incremental)
	void LoadTaxonomy ( SaveLoadManager& m );
}; // TBox

#endif