1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
|
/* This file is part of the FaCT++ DL reasoner
Copyright (C) 2003-2015 Dmitry Tsarkov and The University of Manchester
Copyright (C) 2015-2016 Dmitry Tsarkov
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <iostream>
#include "dltree.h"
#include "fpp_assert.h"
#include "tDataEntry.h"
#include "tRole.h"
/// create entry for the role R
DLTree*
createRole ( TRole* R )
{
return createEntry ( R->isDataRole() ? DNAME : RNAME, R );
}
/// create inverse of role R
DLTree* createInverse ( DLTree* R )
{
fpp_assert ( R != NULL ); // sanity check
switch ( R->Element().getToken() )
{
case INV: // R-- = R
{
DLTree* p = clone(R->Left());
deleteTree(R);
return p;
}
case RNAME: // object role name
if ( unlikely(isTopRole(R)) || unlikely(isBotRole(R)) )
return R; // top/bottom roles are inverses of themselves
return new DLTree ( TLexeme(INV), R );
default: // no other elements can have inverses
fpp_unreachable();
}
}
/// create negation of given formula
DLTree* createSNFNot ( DLTree* C )
{
fpp_assert ( C != NULL ); // sanity check
if ( C->Element() == BOTTOM )
{ // \not F = T
deleteTree(C);
return createTop();
}
if ( C->Element() == TOP )
{ // \not T = F
deleteTree(C);
return createBottom();
}
if ( C->Element () == NOT )
{ // \not\not C = C
DLTree* p = clone(C->Left());
deleteTree(C);
return p;
}
// general case
return new DLTree ( TLexeme(NOT), C );
}
/// create conjunction of given formulas
DLTree* createSNFAnd ( DLTree* C, DLTree* D )
{
// try to simplify conjunction
if ( C == NULL ) // single element
return D;
if ( D == NULL )
return C;
if ( C->Element() == TOP || // T\and D = D
D->Element() == BOTTOM ) // C\and F = F
{
deleteTree(C);
return D;
}
if ( D->Element() == TOP || // C\and T = C
C->Element() == BOTTOM ) // F\and D = F
{
deleteTree(D);
return C;
}
// no simplification possible -- return actual conjunction
return new DLTree ( TLexeme(AND), C, D );
}
static bool
containsC ( DLTree* C, DLTree* D )
{
switch ( C->Element().getToken() )
{
case CNAME:
return equalTrees ( C, D );
case AND:
return containsC ( C->Left(), D ) || containsC ( C->Right(), D );
default:
return false;
}
}
DLTree* createSNFReducedAnd ( DLTree* C, DLTree* D )
{
if ( C == NULL || D == NULL )
return createSNFAnd ( C, D );
if ( D->Element().getToken() == CNAME && containsC ( C, D ) )
{
deleteTree(D);
return C;
}
else if ( D->Element().getToken() == AND )
{
C = createSNFReducedAnd ( C, clone(D->Left()) );
C = createSNFReducedAnd ( C, clone(D->Right()) );
deleteTree(D);
return C;
}
else // can't optimise
return createSNFAnd ( C, D );
}
// Semantic Locality checking support. DO NOT used in usual reasoning
/// @return true iff a data range DR is semantically equivalent to TOP. FIXME!! good approximation for now
static bool
isSemanticallyDataTop ( DLTree* dr ) { return dr->Element().getToken() == TOP; }
/// @return true iff a data range DR is semantically equivalent to BOTTOM. FIXME!! good approximation for now
static bool
isSemanticallyDataBottom ( DLTree* dr ) { return dr->Element().getToken() == BOTTOM; }
/// @return true iff the cardinality of a given data range DR is greater than N. FIXME!! good approximation for now
static bool
isDataRangeBigEnough ( DLTree*, unsigned int ) { return true; }
/// simplify universal restriction with top data role
static DLTree*
simplifyDataTopForall ( DLTree* dr )
{
TreeDeleter td(dr);
// if the filler (dr) is TOP (syntactically or semantically), then the forall is top
if ( isSemanticallyDataTop(dr) )
return createTop();
// in any other case the attempt to restrict the data domain will fail
return createBottom();
}
/// simplify minimal cardinality restriction with top data role
static DLTree*
simplifyDataTopLE ( unsigned int n, DLTree* dr )
{
TreeDeleter td(dr);
// if the filler (dr) is BOTTOM (syntactically or semantically), then the LE is top
if ( isSemanticallyDataBottom(dr) )
return createTop();
// if the size of a filler is smaller than the cardinality, then it's always possible to make a restriction
if ( !isDataRangeBigEnough ( dr, n ) )
return createTop();
// in any other case the attempt to restrict the data domain will fail
return createBottom();
}
/// create universal restriction of given formulas (\AR.C)
DLTree* createSNFForall ( DLTree* R, DLTree* C )
{
if ( C->Element() == TOP ) // \AR.T = T
{
deleteTree(R);
return C;
}
if ( unlikely(isBotRole(R)) )
{ // \A Bot.C = T
deleteTree(R);
deleteTree(C);
return createTop();
}
if ( unlikely(isTopRole(R)) && resolveRole(R)->isDataRole() )
{
deleteTree(R);
return simplifyDataTopForall(C);
}
// no simplification possible
return new DLTree ( TLexeme(FORALL), R, C );
}
/// create at-most (LE) restriction of given formulas (<= n R.C)
DLTree* createSNFLE ( unsigned int n, DLTree* R, DLTree* C )
{
if ( C->Element() == BOTTOM )
{ // <= n R.F -> T;
deleteTree(R);
deleteTree(C);
return createTop();
}
if ( n == 0 ) // <= 0 R.C -> \AR.\not C
return createSNFForall ( R, createSNFNot(C) );
if ( unlikely(isBotRole(R)) )
{ // <=n Bot.C = T
deleteTree(R);
deleteTree(C);
return createTop();
}
if ( unlikely(isTopRole(R)) && resolveRole(R)->isDataRole() )
{
deleteTree(R);
return simplifyDataTopLE ( n, C );
}
return new DLTree ( TLexeme ( LE, n ), R, C );
}
/// create at-least (GE) restriction of given formulas (>= n R.C)
DLTree* createSNFGE ( unsigned int n, DLTree* R, DLTree* C )
{
if ( n == 0 )
{ // >= 0 R.C -> T
deleteTree(R);
deleteTree(C);
return createTop();
}
if ( C->Element() == BOTTOM )
{ // >=n R.F -> F
deleteTree(R);
return C;
}
else // >= n R.C -> !<= (n-1) R.C
return createSNFNot ( createSNFLE ( n-1 , R, C ) );
}
//********************************************************************************************
//** equalTrees implementation
//********************************************************************************************
bool equalTrees ( const DLTree* t1, const DLTree* t2 )
{
// empty trees are equal
if ( t1 == NULL && t2 == NULL )
return true;
// empty and non-empty trees are not equal
if ( t1 == NULL || t2 == NULL )
return false;
// non-empty trees are checked recursively
return ( t1->Element() == t2->Element() ) &&
equalTrees ( t1->Left(), t2->Left() ) &&
equalTrees ( t1->Right(), t2->Right() );
}
bool isSubTree ( const DLTree* t1, const DLTree* t2 )
{
if ( t1 == NULL || t1->Element() == TOP )
return true;
if ( t2 == NULL )
return false;
if ( t1->Element() == AND )
return isSubTree ( t1->Left(), t2 ) && isSubTree ( t1->Right(), t2 );
// t1 is a single elem, t2 is a (probably) AND-tree
if ( t2->Element() == AND )
return isSubTree ( t1, t2->Left() ) || isSubTree ( t1, t2->Right() );
// t1 and t2 are non-single elements
return equalTrees(t1,t2);
}
//********************************************************************************************
//** OnlySNF realization
//********************************************************************************************
bool isSNF ( const DLTree* t )
{
if ( t == NULL )
return true;
switch ( t -> Element (). getToken () )
{
case TOP:
case BOTTOM:
case NAME:
case DATAEXPR:
case NOT:
case INV:
case AND:
case FORALL:
case LE:
case SELF:
case RCOMPOSITION:
case PROJFROM:
case PROJINTO:
return ( isSNF (t->Left()) && isSNF (t->Right()) );
default:
return false;
}
}
//********************************************************************************************
const char* TokenName ( Token t )
{
switch ( t )
{
case TOP: return "*TOP*";
case BOTTOM: return "*BOTTOM*";
case CNAME: return "cname";
case INAME: return "iname";
case RNAME: return "rname";
case DNAME: return "dname";
case DATAEXPR: return "dataexpr";
case INV: return "inv";
case OR: return "or";
case AND: return "and";
case NOT: return "not";
case EXISTS: return "some";
case FORALL: return "all";
case GE: return "at-least";
case LE: return "at-most";
case RCOMPOSITION: return "compose";
case SELF: return "self-ref";
case PROJINTO: return "project_into";
case PROJFROM: return "project_from";
default:
std::cerr << "token " << t << "has no name";
fpp_unreachable();
return NULL;
};
}
std::ostream& operator << ( std::ostream& o, const DLTree *form )
{
if ( form == NULL )
return o;
const TLexeme& lex = form->Element();
switch ( lex.getToken() )
{
case TOP:
case BOTTOM:
o << ' ' << TokenName(lex.getToken());
break;
case RNAME:
case DNAME:
case CNAME:
o << ' ' << lex.getName();
break;
case INAME:
o << " (one-of " << lex.getName() << ')';
break;
case DATAEXPR:
static_cast<TDataEntry*>(lex.getNE())->printLISP(o);
break;
case NOT:
case INV:
case SELF:
o << " (" << TokenName (lex.getToken()) << form->Left() << ')';
break;
case AND:
case OR:
case EXISTS:
case FORALL:
case RCOMPOSITION:
case PROJINTO:
case PROJFROM:
o << " (" << TokenName (lex.getToken()) << form->Left() << form->Right() << ')';
break;
case GE:
case LE:
o << " (" << TokenName (lex.getToken()) << ' ' << lex.getData()
<< form->Left() << form->Right() << ')';
break;
default:
break;
}
return o;
}
//********************************************************************************************
|