1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
|
/* This file is part of the FaCT++ DL reasoner
Copyright (C) 2003-2015 Dmitry Tsarkov and The University of Manchester
Copyright (C) 2015-2016 Dmitry Tsarkov
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef TAXIOM_H
#define TAXIOM_H
#include <vector>
#include "globaldef.h"
#include "dltree.h"
#include "tConcept.h"
#include "tRole.h"
#include "counter.h"
// uncomment this to have absorption debug messages
//#define RKG_DEBUG_ABSORPTION
class TBox;
// statistical counters lives here
namespace Stat
{
class SAbsRepCN: public counter<SAbsRepCN> {};
class SAbsRepForall: public counter<SAbsRepForall> {};
class SAbsSplit: public counter<SAbsSplit> {};
class SAbsBApply: public counter<SAbsBApply> {};
class SAbsTApply: public counter<SAbsTApply> {};
class SAbsCApply: public counter<SAbsCApply> {};
class SAbsCAttempt: public counter<SAbsCAttempt> {};
class SAbsNApply: public counter<SAbsNApply> {};
class SAbsNAttempt: public counter<SAbsNAttempt> {};
class SAbsRApply: public counter<SAbsRApply> {};
class SAbsRAttempt: public counter<SAbsRAttempt> {};
}
// NS for different DLTree matchers for trees in axiom
namespace InAx
{
/// build an RW concept from a given [C|I]NAME-rooted DLTree
inline TConcept* getConcept ( DLTree* p )
{ return static_cast<TConcept*>(p->Element().getNE()); }
/// build an RO concept from a given [C|I]NAME-rooted DLTree
inline const TConcept* getConcept ( const DLTree* p )
{ return static_cast<const TConcept*>(p->Element().getNE()); }
/// @ return true if a concept C is a concept is non-primitive
bool isNP ( const TConcept* C, TBox& KB );
/// @return true iff P is a TOP
inline bool isTop ( const DLTree* p ) { return p->Element() == BOTTOM; }
/// @return true iff P is a BOTTOM
inline bool isBot ( const DLTree* p ) { return p->Element() == TOP; }
/// @return true iff P is a positive concept name
inline bool isPosCN ( const DLTree* p ) { return p->Element() == NOT && isName(p->Left()); }
/// @return true iff P is a positive non-primitive CN
inline bool isPosNP ( const DLTree* p, TBox& KB )
{ return isPosCN(p) && isNP(getConcept(p->Left()),KB); }
/// @return true iff P is a positive primitive CN
inline bool isPosPC ( const DLTree* p )
{ return isPosCN(p) && getConcept(p->Left())->isPrimitive(); }
/// @return true iff P is a negative concept name
inline bool isNegCN ( const DLTree* p ) { return isName(p); }
/// @return true iff P is a negative non-primitive CN
inline bool isNegNP ( const DLTree* p, TBox& KB )
{ return isNegCN(p) && isNP(getConcept(p),KB); }
/// @return true iff P is a negative primitive CN
inline bool isNegPC ( const DLTree* p )
{ return isNegCN(p) && getConcept(p)->isPrimitive(); }
/// @return true iff P is an AND expression
inline bool isAnd ( const DLTree* p ) { return p->Element() == NOT && p->Left()->Element() == AND; }
/// @return true iff P is an OR expression
inline bool isOr ( const DLTree* p ) { return p->Element() == AND; }
/// @return true iff P is a general FORALL expression
inline bool isForall ( const DLTree* p ) { return p->Element() == NOT && p->Left()->Element() == FORALL; }
/// @return true iff P is an object FORALL expression
inline bool isOForall ( const DLTree* p ) { return isForall(p) && !resolveRole(p->Left()->Left())->isDataRole(); }
/// @return true iff P is a FORALL expression suitable for absorption
inline bool isAbsForall ( const DLTree* p )
{
if ( !isOForall(p) )
return false;
const DLTree* C = p->Left()->Right();
if ( isTop(C) ) // no sense to replace \AR.BOTTOM as it well lead to the same GCI
return false;
return !isName(C) || !getConcept(C)->isSystem();
}
/// @return true iff P is a FORALL expression suitable for absorption with name at the end
inline bool isSimpleForall ( const DLTree* p )
{
if ( !isAbsForall(p) )
return false;
const DLTree* C = p->Left()->Right();
// forall is simple if its filler is a name of a primitive concept
return isName(C) && (getConcept(C)->Description == NULL);
}
} // InAx
class TAxiom
{
private: // no assignment
/// copy c'tor
TAxiom ( const TAxiom& ax );
/// assignment
TAxiom& operator = ( const TAxiom& ax );
protected: // types
/// type for axiom's representation, suitable for absorption
typedef std::vector<DLTree*> absorptionSet;
/// RW iterator for the elements of GCI
typedef absorptionSet::iterator iterator;
/// RO iterator for the elements of GCI
typedef absorptionSet::const_iterator const_iterator;
/// set of iterators to work with
typedef absorptionSet WorkSet;
protected: // members
/// GCI is presented in the form (or Disjuncts);
absorptionSet Disjuncts;
/// the origin of an axiom if obtained during processing
const TAxiom* origin;
protected: // methods
// access to labels
/// RW begin
iterator begin ( void ) { return Disjuncts.begin(); }
/// RW end
iterator end ( void ) { return Disjuncts.end(); }
/// RO begin
const_iterator begin ( void ) const { return Disjuncts.begin(); }
/// RO end
const_iterator end ( void ) const { return Disjuncts.end(); }
/// create a copy of a given GCI; ignore SKIP entry
TAxiom* copy ( const DLTree* skip ) const
{
TAxiom* ret = new TAxiom(this);
for ( const_iterator i = begin(), i_end = end(); i != i_end; ++i )
if ( *i != skip )
ret->Disjuncts.push_back(clone(*i));
return ret;
}
// single disjunct's optimisations
/// simplify (OR C ...) for a non-primitive C in a given position
TAxiom* simplifyPosNP ( const DLTree* rep ) const
{
Stat::SAbsRepCN();
TAxiom* ret = copy(rep);
ret->add(createSNFNot(clone(InAx::getConcept(rep->Left())->Description)));
# ifdef RKG_DEBUG_ABSORPTION
std::cout << " simplify CN expression for" << rep->Left();
# endif
return ret;
}
/// simplify (OR ~C ...) for a non-primitive C in a given position
TAxiom* simplifyNegNP ( const DLTree* rep ) const
{
Stat::SAbsRepCN();
TAxiom* ret = copy(rep);
ret->add(clone(InAx::getConcept(rep)->Description));
# ifdef RKG_DEBUG_ABSORPTION
std::cout << " simplify ~CN expression for" << rep;
# endif
return ret;
}
/// simplify (OR (SOME R C) ...)) in a given position
TAxiom* simplifyForall ( const DLTree* rep, TBox& KB ) const;
/// split (OR (AND...) ...) in a given position
void split ( std::vector<TAxiom*>& acc, const DLTree* rep, DLTree* pAnd ) const
{
if ( pAnd->Element().getToken() == AND )
{ // split the AND
split ( acc, rep, pAnd->Left() );
split ( acc, rep, pAnd->Right() );
}
else
{
TAxiom* ret = copy(rep);
ret->add(createSNFNot(clone(pAnd)));
acc.push_back(ret);
}
}
/// create a concept expression corresponding to a given GCI; ignore SKIP entry
DLTree* createAnAxiom ( const DLTree* skip ) const;
public: // interface
/// create an empty GCI
TAxiom ( const TAxiom* parent ) : origin(parent) {}
/// d'tor: delete elements if AX is not in use
~TAxiom ( void )
{
for ( iterator i = begin(), i_end = end(); i != i_end; ++i )
deleteTree(*i);
}
/// add DLTree to an axiom
void add ( DLTree* p );
/// check whether 2 axioms are the same
bool operator == ( const TAxiom& ax ) const
{
# ifdef RKG_DEBUG_ABSORPTION
// std::cout << "\n comparing "; dump(std::cout);
// std::cout << " with "; ax.dump(std::cout);
# endif
if ( Disjuncts.size() != ax.Disjuncts.size() )
{
# ifdef RKG_DEBUG_ABSORPTION
// std::cout << " different size";
# endif
return false;
}
const_iterator p = begin(), q = ax.begin(), p_end = end();
for ( ; p != p_end; ++p, ++q )
if ( !equalTrees(*p,*q) )
{
# ifdef RKG_DEBUG_ABSORPTION
// std::cout << " different tree:" << *p << " vs" << *q;
# endif
return false;
}
# ifdef RKG_DEBUG_ABSORPTION
// std::cout << " equal!";
# endif
return true;
}
/// replace a defined concept with its description
TAxiom* simplifyCN ( TBox& KB ) const;
/// replace a universal restriction with a fresh concept
TAxiom* simplifyForall ( TBox& KB ) const;
/// replace a simple universal restriction with a fresh concept
TAxiom* simplifySForall ( TBox& KB ) const;
/// split an axiom; @return new axiom and/or NULL
bool split ( std::vector<TAxiom*>& acc ) const
{
acc.clear();
for ( const_iterator p = begin(), p_end = end(); p != p_end; ++p )
if ( InAx::isAnd(*p) )
{
Stat::SAbsSplit();
# ifdef RKG_DEBUG_ABSORPTION
std::cout << " split AND expression" << (*p)->Left();
# endif
split ( acc, *p, (*p)->Left() );
// no need to split more than once:
// every extra splits would be together with unsplitted parts
// like: (A or B) and (C or D) would be transform into
// A and (C or D), B and (C or D), (A or B) and C, (A or B) and D
// so just return here
return true;
}
return false;
}
/// @return true iff an axiom is the same as one of its ancestors
bool isCyclic ( void ) const
{
for ( const TAxiom* p = origin; p; p = p->origin )
if ( *p == *this )
{
# ifdef RKG_DEBUG_ABSORPTION
std::cout << " same as ancestor";
# endif
return true;
}
return false;
}
/// absorb into BOTTOM; @return true if absorption is performed
bool absorbIntoBottom ( void ) const;
/// absorb into TOP; @return true if absorption is performed
bool absorbIntoTop ( TBox& KB ) const;
/// absorb into concept; @return true if absorption is performed
bool absorbIntoConcept ( TBox& KB ) const;
/// absorb into negation of a concept; @return true if absorption is performed
bool absorbIntoNegConcept ( TBox& KB ) const;
/// absorb into role domain; @return true if absorption is performed
bool absorbIntoDomain ( void ) const;
/// create a concept expression corresponding to a given GCI
DLTree* createAnAxiom ( void ) const { return createAnAxiom(NULL); }
#ifdef RKG_DEBUG_ABSORPTION
/// dump GCI for debug purposes
void dump ( std::ostream& o ) const;
#endif
}; // TAxiom;
#endif
|