1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
|
/* This file is part of the FaCT++ DL reasoner
Copyright (C) 2003-2015 Dmitry Tsarkov and The University of Manchester
Copyright (C) 2015-2016 Dmitry Tsarkov
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef TONTOLOGYLOADER_H
#define TONTOLOGYLOADER_H
#include "tOntology.h"
#include "tExpressionTranslator.h"
#include "dlTBox.h"
class TOntologyLoader: public DLAxiomVisitor
{
protected: // members
/// KB to load the ontology
TBox& kb;
/// Transforms TDLExpression hierarchy to the DLTree*
TExpressionTranslator ETrans;
/// temporary vector for arguments of TBox n-ary axioms
std::vector<DLTree*> ArgList;
protected: // methods
/// get DLTree corresponding to an expression EXPR
DLTree* e ( const TDLExpression* expr )
{
expr->accept(ETrans);
return ETrans;
}
/// get role by the DLTree; throw exception if unable
TRole* getRole ( const TDLRoleExpression* r, const char* reason )
{
try
{
return resolveRole(TreeDeleter(e(r)));
}
catch ( const EFaCTPlusPlus& e ) { throw EFaCTPlusPlus(reason); }
}
/// get an individual be the DLTree; throw exception if unable
TIndividual* getIndividual ( const TDLIndividualExpression* I, const char* reason )
{
try
{
TreeDeleter i = e(I);
if ( i == NULL )
throw EFaCTPlusPlus(reason);
return static_cast<TIndividual*>(kb.getCI(i));
}
catch(...)
{
throw EFaCTPlusPlus(reason);
}
}
/// ensure that the expression EXPR has its named entities linked to the KB ones
void ensureNames ( const TDLExpression* Expr )
{
fpp_assert ( Expr != NULL ); // FORNOW
}
/// prepare arguments for the [begin,end) interval
template<class Iterator>
void prepareArgList ( Iterator begin, Iterator end )
{
ArgList.clear();
for ( ; begin != end; ++begin )
{
ensureNames(*begin);
ArgList.push_back(e(*begin));
}
}
public: // visitor interface
virtual void visit ( const TDLAxiomDeclaration& axiom )
{
ensureNames(axiom.getDeclaration());
TreeDeleter(e(axiom.getDeclaration())); // register names in the KB
}
// n-ary axioms
virtual void visit ( const TDLAxiomEquivalentConcepts& axiom )
{
prepareArgList(axiom.begin(),axiom.end());
kb.processEquivalentC(ArgList.begin(),ArgList.end());
}
virtual void visit ( const TDLAxiomDisjointConcepts& axiom )
{
prepareArgList(axiom.begin(),axiom.end());
kb.processDisjointC(ArgList.begin(),ArgList.end());
}
virtual void visit ( const TDLAxiomDisjointUnion& axiom )
{
// first make a disjoint axiom
prepareArgList(axiom.begin(),axiom.end());
kb.processDisjointC(ArgList.begin(),ArgList.end());
// now define C as a union-of axiom
ArgList.clear();
ensureNames(axiom.getC());
ArgList.push_back(e(axiom.getC()));
DLTree* acc = createBottom();
for ( TDLAxiomDisjointUnion::iterator p = axiom.begin(), p_end = axiom.end(); p != p_end; ++p )
acc = createSNFOr ( acc, e(*p) );
ArgList.push_back(acc);
kb.processEquivalentC(ArgList.begin(),ArgList.end());
}
virtual void visit ( const TDLAxiomEquivalentORoles& axiom )
{
prepareArgList(axiom.begin(),axiom.end());
kb.processEquivalentR(ArgList.begin(),ArgList.end());
}
virtual void visit ( const TDLAxiomEquivalentDRoles& axiom )
{
prepareArgList(axiom.begin(),axiom.end());
kb.processEquivalentR(ArgList.begin(),ArgList.end());
}
virtual void visit ( const TDLAxiomDisjointORoles& axiom )
{
prepareArgList(axiom.begin(),axiom.end());
kb.processDisjointR(ArgList.begin(),ArgList.end());
}
virtual void visit ( const TDLAxiomDisjointDRoles& axiom )
{
prepareArgList(axiom.begin(),axiom.end());
kb.processDisjointR(ArgList.begin(),ArgList.end());
}
virtual void visit ( const TDLAxiomSameIndividuals& axiom )
{
prepareArgList(axiom.begin(),axiom.end());
kb.processSame(ArgList.begin(),ArgList.end());
}
virtual void visit ( const TDLAxiomDifferentIndividuals& axiom )
{
prepareArgList(axiom.begin(),axiom.end());
kb.processDifferent(ArgList.begin(),ArgList.end());
}
virtual void visit ( const TDLAxiomFairnessConstraint& axiom )
{
prepareArgList(axiom.begin(),axiom.end());
kb.setFairnessConstraint(ArgList.begin(),ArgList.end());
}
// role axioms
virtual void visit ( const TDLAxiomRoleInverse& axiom )
{
ensureNames(axiom.getRole());
ensureNames(axiom.getInvRole());
TRole* R = getRole ( axiom.getRole(), "Role expression expected in Role Inverse axiom" );
TRole* iR = getRole ( axiom.getInvRole(), "Role expression expected in Role Inverse axiom" );
kb.getRM(R)->addRoleSynonym ( iR->inverse(), R );
}
virtual void visit ( const TDLAxiomORoleSubsumption& axiom )
{
ensureNames(axiom.getRole());
ensureNames(axiom.getSubRole());
DLTree* Sub = e(axiom.getSubRole());
TRole* R = getRole ( axiom.getRole(), "Role expression expected in Object Roles Subsumption axiom" );
kb.getRM(R)->addRoleParent ( Sub, R );
}
virtual void visit ( const TDLAxiomDRoleSubsumption& axiom )
{
ensureNames(axiom.getRole());
ensureNames(axiom.getSubRole());
TRole* R = getRole ( axiom.getRole(), "Role expression expected in Data Roles Subsumption axiom" );
TRole* S = getRole ( axiom.getSubRole(), "Role expression expected in Data Roles Subsumption axiom" );
kb.getDRM()->addRoleParent ( S, R );
}
virtual void visit ( const TDLAxiomORoleDomain& axiom )
{
ensureNames(axiom.getRole());
ensureNames(axiom.getDomain());
TRole* R = getRole ( axiom.getRole(), "Role expression expected in Object Role Domain axiom" );
DLTree* C = e(axiom.getDomain());
if ( unlikely(R->isTop()) ) // add GCI
kb.addSubsumeAxiom ( createTop(), C );
else if ( likely(!R->isBottom()) ) // nothing to do for bottom
R->setDomain(C);
}
virtual void visit ( const TDLAxiomDRoleDomain& axiom )
{
ensureNames(axiom.getRole());
ensureNames(axiom.getDomain());
TRole* R = getRole ( axiom.getRole(), "Role expression expected in Data Role Domain axiom" );
DLTree* C = e(axiom.getDomain());
if ( unlikely(R->isTop()) ) // add GCI
kb.addSubsumeAxiom ( createTop(), C );
else if ( likely(!R->isBottom()) ) // nothing to do for bottom
R->setDomain(C);
}
virtual void visit ( const TDLAxiomORoleRange& axiom )
{
ensureNames(axiom.getRole());
ensureNames(axiom.getRange());
TRole* R = getRole ( axiom.getRole(), "Role expression expected in Object Role Range axiom" );
DLTree* C = e(axiom.getRange());
if ( unlikely(R->isTop()) ) // add GCI
kb.addSubsumeAxiom ( createTop(), C );
else if ( likely(!R->isBottom()) ) // nothing to do for bottom
R->setRange(C);
}
virtual void visit ( const TDLAxiomDRoleRange& axiom )
{
ensureNames(axiom.getRole());
ensureNames(axiom.getRange());
getRole ( axiom.getRole(), "Role expression expected in Data Role Range axiom" )->setRange(e(axiom.getRange()));
}
virtual void visit ( const TDLAxiomRoleTransitive& axiom )
{
ensureNames(axiom.getRole());
TRole* R = getRole ( axiom.getRole(), "Role expression expected in Role Transitivity axiom" );
if ( !R->isTop() && !R->isBottom() ) // top/bottom roles are always transitive
R->setTransitive();
}
virtual void visit ( const TDLAxiomRoleReflexive& axiom )
{
ensureNames(axiom.getRole());
TRole* R = getRole ( axiom.getRole(), "Role expression expected in Role Reflexivity axiom" );
if ( R->isBottom() ) // empty role can't be reflexive
throw EFPPInconsistentKB();
if ( !R->isTop() ) // universal role always reflexive
R->setReflexive(true);
}
virtual void visit ( const TDLAxiomRoleIrreflexive& axiom )
{
ensureNames(axiom.getRole());
TRole* R = getRole ( axiom.getRole(), "Role expression expected in Role Irreflexivity axiom" );
if ( R->isTop() ) // KB became inconsistent
throw EFPPInconsistentKB();
if ( !R->isBottom() ) // empty role already irreflexive
{
R->setDomain(createSNFNot(createSNFSelf(e(axiom.getRole()))));
R->setIrreflexive(true);
}
}
virtual void visit ( const TDLAxiomRoleSymmetric& axiom )
{
ensureNames(axiom.getRole());
TRole* R = getRole ( axiom.getRole(), "Role expression expected in Role Symmetry axiom" );
if ( !R->isTop() && !R->isBottom() ) // both are symmetric
{
R->setSymmetric(true);
kb.getORM()->addRoleParent ( R, R->inverse() );
}
}
virtual void visit ( const TDLAxiomRoleAsymmetric& axiom )
{
ensureNames(axiom.getRole());
TRole* R = getRole ( axiom.getRole(), "Role expression expected in Role Asymmetry axiom" );
if ( R->isTop() ) // KB became inconsistent
throw EFPPInconsistentKB();
if ( !R->isBottom() )
{
R->setAsymmetric(true);
kb.getORM()->addDisjointRoles ( R, R->inverse() );
}
}
virtual void visit ( const TDLAxiomORoleFunctional& axiom )
{
ensureNames(axiom.getRole());
TRole* R = getRole ( axiom.getRole(), "Role expression expected in Object Role Functionality axiom" );
if ( R->isTop() ) // NOTE!! not really the case (1-point models are fine here), but OWL 2 forbid this
throw EFPPInconsistentKB();
if ( !R->isBottom() )
R->setFunctional();
}
virtual void visit ( const TDLAxiomDRoleFunctional& axiom )
{
ensureNames(axiom.getRole());
TRole* R = getRole ( axiom.getRole(), "Role expression expected in Data Role Functionality axiom" );
if ( R->isTop() ) // KB became inconsistent
throw EFPPInconsistentKB();
if ( !R->isBottom() )
R->setFunctional();
}
virtual void visit ( const TDLAxiomRoleInverseFunctional& axiom )
{
ensureNames(axiom.getRole());
TRole* R = getRole ( axiom.getRole(), "Role expression expected in Role Inverse Functionality axiom" );
if ( R->isTop() ) // NOTE!! not really the case (1-point models are fine here), but OWL 2 forbid this
throw EFPPInconsistentKB();
if ( !R->isBottom() )
R->inverse()->setFunctional();
}
// concept/individual axioms
virtual void visit ( const TDLAxiomConceptInclusion& axiom )
{
ensureNames(axiom.getSubC());
ensureNames(axiom.getSupC());
DLTree* C = e(axiom.getSubC());
DLTree* D = e(axiom.getSupC());
kb.addSubsumeAxiom ( C, D );
}
virtual void visit ( const TDLAxiomInstanceOf& axiom )
{
ensureNames(axiom.getIndividual());
ensureNames(axiom.getC());
getIndividual ( axiom.getIndividual(), "Individual expected in Instance axiom" );
DLTree* I = e(axiom.getIndividual());
DLTree* C = e(axiom.getC());
kb.addSubsumeAxiom ( I, C );
}
virtual void visit ( const TDLAxiomRelatedTo& axiom )
{
ensureNames(axiom.getIndividual());
ensureNames(axiom.getRelation());
ensureNames(axiom.getRelatedIndividual());
TRole* R = getRole ( axiom.getRelation(), "Role expression expected in Related To axiom" );
if ( R->isBottom() )
throw EFPPInconsistentKB();
if ( !R->isTop() ) // nothing to do for universal role
{
TIndividual* I = getIndividual ( axiom.getIndividual(), "Individual expected in Related To axiom" );
TIndividual* J = getIndividual ( axiom.getRelatedIndividual(), "Individual expected in Related To axiom" );
kb.RegisterIndividualRelation ( I, R, J );
}
}
virtual void visit ( const TDLAxiomRelatedToNot& axiom )
{
ensureNames(axiom.getIndividual());
ensureNames(axiom.getRelation());
ensureNames(axiom.getRelatedIndividual());
TRole* R = getRole ( axiom.getRelation(), "Role expression expected in Related To Not axiom" );
if ( R->isTop() ) // inconsistent ontology
throw EFPPInconsistentKB();
// make sure everything is consistent
getIndividual ( axiom.getIndividual(), "Individual expected in Related To Not axiom" ),
getIndividual ( axiom.getRelatedIndividual(), "Individual expected in Related To Not axiom" );
if ( !R->isBottom() ) // nothing to do
kb.addSubsumeAxiom ( // make an axiom i:AR.\neg{j}
e(axiom.getIndividual()),
createSNFForall ( e(axiom.getRelation()), createSNFNot(e(axiom.getRelatedIndividual())) ) );
}
virtual void visit ( const TDLAxiomValueOf& axiom )
{
ensureNames(axiom.getIndividual());
ensureNames(axiom.getAttribute());
getIndividual ( axiom.getIndividual(), "Individual expected in Value Of axiom" );
// FIXME!! think about ensuring the value
TRole* R = getRole ( axiom.getAttribute(), "Role expression expected in Value Of axiom" );
if ( R->isBottom() )
throw EFPPInconsistentKB();
if ( !R->isTop() ) // nothing to do for universal role
kb.addSubsumeAxiom ( // make an axiom i:EA.V
e(axiom.getIndividual()),
createSNFExists ( e(axiom.getAttribute()), e(axiom.getValue())) );
}
virtual void visit ( const TDLAxiomValueOfNot& axiom )
{
ensureNames(axiom.getIndividual());
ensureNames(axiom.getAttribute());
getIndividual ( axiom.getIndividual(), "Individual expected in Value Of Not axiom" );
// FIXME!! think about ensuring the value
TRole* R = getRole ( axiom.getAttribute(), "Role expression expected in Value Of Not axiom" );
if ( R->isTop() )
throw EFPPInconsistentKB();
if ( !R->isBottom() ) // nothing to do for empty role
kb.addSubsumeAxiom ( // make an axiom i:AA.\neg V
e(axiom.getIndividual()),
createSNFForall ( e(axiom.getAttribute()), createSNFNot(e(axiom.getValue()))) );
}
public: // interface
/// init c'tor
TOntologyLoader ( TBox& KB ) : kb(KB), ETrans(KB) {}
/// empty d'tor
virtual ~TOntologyLoader ( void ) {}
/// load ontology to a given KB
void visitOntology ( TOntology& ontology )
{
ontology.visitOntology(*this);
kb.finishLoading();
}
}; // TOntologyLoader
#endif
|