File: tRole.cpp

package info (click to toggle)
fact%2B%2B 1.6.5~dfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, forky, sid, trixie
  • size: 4,496 kB
  • sloc: cpp: 28,000; java: 22,674; xml: 3,268; makefile: 102; ansic: 61; sh: 3
file content (461 lines) | stat: -rw-r--r-- 11,978 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
/* This file is part of the FaCT++ DL reasoner
Copyright (C) 2003-2015 Dmitry Tsarkov and The University of Manchester
Copyright (C) 2015-2016 Dmitry Tsarkov

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
*/

#include <set>
#include <fstream>
#include <algorithm>

#include "tRole.h"
#include "Taxonomy.h"

void TRole :: fillsComposition ( TRoleVec& Composition, const DLTree* tree ) const
{
	if ( tree->Element() == RCOMPOSITION )
	{
		fillsComposition ( Composition, tree->Left() );
		fillsComposition ( Composition, tree->Right() );
	}
	else
		Composition.push_back(resolveRole(tree));
}

/// copy role information (like transitivity, functionality, R&D etc) to synonym
void TRole :: addFeaturesToSynonym ( void )
{
	if ( !isSynonym() )
		return;

	TRole* syn = resolveSynonym(this);

	// don't copy parents: they are already copied during ToldSubsumers processing

	// copy functionality
	if ( isFunctional() && !syn->isFunctional() )
		syn->setFunctional();

	// copy transitivity
	if ( isTransitive() )
		syn->setTransitive ();

	// copy reflexivity
	if ( isReflexive() )
		syn->setReflexive();

	// copy data type
	if ( isDataRole() )
		syn->setDataRole();

	// copy R&D
	if ( pDomain != NULL )
		syn->setDomain (clone(pDomain));

	// copy disjoint
	if ( isDisjoint() )
		syn->Disjoint.insert ( Disjoint.begin(), Disjoint.end() );

	// copy subCompositions
	syn->subCompositions.insert ( syn->subCompositions.end(),
								  subCompositions.begin(),
								  subCompositions.end() );

	// syn should be the only parent for synonym
	toldSubsumers.clear();
	addParent(syn);
}

// compare 2 TRoles wrt order of synonyms
class TRoleCompare
{
public:
	bool operator() ( TRole* p, TRole* q ) const
	{
		int n = p->getId(), m = q->getId();
		if ( n > 0 && m < 0 )
			return true;
		if ( n < 0 && m > 0 )
			return false;
		return abs(n) < abs(m);
	}
}; // TRoleCompare

TRole* TRole :: eliminateToldCycles ( TRoleSet& RInProcess, TRoleVec& ToldSynonyms )
{
	// skip synonyms
	if ( isSynonym() )
		return NULL;

	// if we found a cycle...
	if ( RInProcess.find(this) != RInProcess.end() )
	{
		ToldSynonyms.push_back(this);
		return this;
	}

	TRole* ret = NULL;

	// start processing role
	RInProcess.insert(this);

	// ensure that parents does not contain synonyms
	removeSynonymsFromParents();

	// not involved in cycle -- check all told subsumers
	for ( ClassifiableEntry::const_iterator r = told_begin(); r != told_end(); ++r )
		// if cycle was detected
		if ( (ret = static_cast<TRole*>(*r)->eliminateToldCycles ( RInProcess, ToldSynonyms )) != NULL )
		{
			if ( ret == this )
			{
				std::sort ( ToldSynonyms.begin(), ToldSynonyms.end(), TRoleCompare() );
				// now first element is representative; save it as RET
				ret = *ToldSynonyms.begin();

				// make all others synonyms of RET
				for ( std::vector<TRole*>::iterator
						p = ToldSynonyms.begin()+1, p_end = ToldSynonyms.end(); p < p_end; ++p )
				{
					(*p)->setSynonym(ret);
					ret->addParents ( (*p)->told_begin(), (*p)->told_end() );
				}

				ToldSynonyms.clear();
				// restart search for the representative
				RInProcess.erase(this);
				return ret->eliminateToldCycles ( RInProcess, ToldSynonyms );
			}
			else	// some role inside a cycle: save it and return
			{
				ToldSynonyms.push_back(this);
				break;
			}
		}

	// finish processing role
	RInProcess.erase(this);
	return ret;
}

void TRole :: Print ( std::ostream& o ) const
{
	o << "Role \"" << getName() << "\"(" << getId() << ")";

//FIXME!! while it's not necessary
//		o << " [" << r.nUsageFreq << "]";

	// transitivity
	if ( isTransitive() )
		o << "T";

	// reflexivity
	if ( isReflexive() )
		o << "R";

	// functionality
	if ( isTopFunc() )
		o << "t";
	if ( isFunctional() )
		o << "F";

	// data role
	if ( isDataRole() )
		o << "D";

	if ( isSynonym() )
	{
		o << " = \"" << getSynonym()->getName() << "\"\n";
		return;
	}

	if ( !toldSubsumers.empty() )
	{
		ClassifiableEntry::linkSet::const_iterator q = toldSubsumers.begin();

		o << " parents={\"" << (*q)->getName();

		for ( ++q; q != toldSubsumers.end(); ++q )
			o << "\", \"" << (*q)->getName();

		o << "\"}";
	}

	if ( !Disjoint.empty() )
	{
		TRoleSet::const_iterator p = Disjoint.begin(), p_end = Disjoint.end();

		o << " disjoint with {\"" << (*p)->getName();

		for ( ++p; p != p_end; ++p )
			o << "\", \"" << (*p)->getName();

		o << "\"}";
	}

	// range/domain
	if ( getTDomain() != NULL )
		o << " Domain=(" << getBPDomain() << ")=" << getTDomain();
	if ( getTRange() != NULL )
		o << " Range=(" << getBPRange() << ")=" << getTRange();

	if ( !isDataRole() )
	{
		o << "\nAutomaton (size " << A.size() << "): " << ( A.isISafe() ? "I" : "i" ) << ( A.isOSafe() ? "O" : "o" );
		A.Print(o);
	}
	o << "\n";
}

// actor to fill vector by traversing taxonomy in a proper direction
class AddRoleActor: public WalkerInterface
{
protected:
	TRole::TRoleVec& rset;
public:
	AddRoleActor ( TRole::TRoleVec& v ) : rset(v) {}
	virtual ~AddRoleActor ( void ) {}
	virtual bool apply ( const TaxonomyVertex& v )
	{
		if ( v.getPrimer()->getId() == 0 )
			return false;
		rset.push_back(const_cast<TRole*>(static_cast<const TRole*>(v.getPrimer())));
		return true;
	}
}; // AddRoleActor

/// init ancestors and descendants using Taxonomy
void
TRole :: initADbyTaxonomy ( Taxonomy* pTax, size_t nRoles )
{
	fpp_assert ( isClassified() );	// safety check
	fpp_assert ( Ancestor.empty() && Descendant.empty() );

	// Note that Top/Bottom are not connected to taxonomy yet.

	// fills ancestors by the taxonomy
	AddRoleActor anc(Ancestor);
	pTax->getRelativesInfo</*needCurrent=*/false, /*onlyDirect=*/false, /*upDirection=*/true> ( getTaxVertex(), anc );
	// fills descendants by the taxonomy
	AddRoleActor desc(Descendant);
	pTax->getRelativesInfo</*needCurrent=*/false, /*onlyDirect=*/false, /*upDirection=*/false> ( getTaxVertex(), desc );

	// resize maps for fast access
	DJRoles.resize(nRoles);
	AncMap.resize(nRoles);
	// init map for fast Anc/Desc access
	addAncestorsToBitMap(AncMap);
}

void TRole :: postProcess ( void )
{
	// set Topmost-Functional field
	initTopFunc();
	// init DJ roles map
	if ( isDisjoint() )
		initDJMap();
}

/// check if the role is topmost-functional (internal-use only)
// not very efficient, but good enough
bool TRole :: isRealTopFunc ( void ) const
{
	if ( !isFunctional() )	// all REAL top-funcs have their self-ref in TopFunc already
		return false;
	// if any of the parent is self-proclaimed top-func -- this one is not top-func
	for ( const_iterator p = begin_anc(), p_end = end_anc(); p != p_end; ++p )
		if ( (*p)->isTopFunc() )
			return false;

	// functional role with no functional parents is top-most functional
	return true;
}

/// set up TopFunc member (internal-use only)
// not very efficient, but good enough
void TRole :: initTopFunc ( void )
{
	if ( isRealTopFunc() )	// TF already set up -- nothing to do
		return;

	if ( isTopFunc() )		// sefl-proclaimed TF but not real -- need to be updated
		TopFunc.clear();

	// register all real TFs
	for ( const_iterator p = begin_anc(), p_end = end_anc(); p != p_end; ++p )
		if ( (*p)->isRealTopFunc() )
			TopFunc.push_back(*p);

	if ( !TopFunc.empty() )
		Functionality.setValue(true);
}

// disjoint-related implementation

/// check (and correct) case whether R != S for R [= S
void TRole :: checkHierarchicalDisjoint ( TRole* R )
{
	// if element is disjoint with itself -- the role is empty
	if ( Disjoint.count(R) )
	{
		setDomain(createBottom());
		Disjoint.clear();
		return;
	}

	// check whether a sub-role is disjoint with the given one
	for ( const_iterator p = R->begin_desc(), p_end = R->end_desc(); p != p_end; ++p )
		if ( Disjoint.count(*p) )
		{
			(*p)->setDomain(createBottom());
			Disjoint.erase(*p);
			(*p)->Disjoint.clear();
		}
}

/// init map of all disjoint roles (N is a size of a bitmap)
void TRole :: initDJMap ( void )
{
	// role R is disjoint with every role S' [= S such that R != S
	for ( TRoleSet::iterator q = Disjoint.begin(), q_end = Disjoint.end(); q != q_end; ++q )
		DJRoles[(*q)->getIndex()] = true;
}

// automaton-related implementation

void
TRole :: preprocessComposition ( TRoleVec& RS )
{
	bool same = false;
	size_t last = RS.size()-1;
	size_t i = 0;	// current element of the composition

	for ( TRoleVec::iterator p = RS.begin(), p_end = RS.end(); p != p_end; ++p, ++i )
	{
		TRole* R = resolveSynonym(*p);

		if ( R->isBottom() )	// empty role in composition -- nothing to do
		{
			RS.clear();
			return;
		}
		if ( R == this )	// found R in composition
		{
			if ( i != 0 && i != last )		// R in the middle of the composition
				throw EFPPCycleInRIA(getName());
			if ( same )	// second one
			{
				if ( last == 1 )	// transitivity
				{
					RS.clear();
					setTransitive();
					return;
				}
				else					// wrong (undecidable) axiom
					throw EFPPCycleInRIA(getName());
			}
			else		// first one
				same = true;
		}

		*p = R;	// replace possible synonyms
	}
}

/// complete role automaton
void TRole :: completeAutomaton ( TRoleSet& RInProcess )
{
	// check whether RA is already complete
	if ( A.isCompleted() )
		return;

	// if we found a cycle...
	if ( RInProcess.find(this) != RInProcess.end() )
		throw EFPPCycleInRIA(getName());

	// start processing role
	RInProcess.insert(this);

	// make sure that all sub-roles already have completed automata
	for ( const_iterator p = begin_desc(), p_end = end_desc(); p != p_end; ++p )
		(*p)->completeAutomaton(RInProcess);

	// add automata for complex role inclusions
	for ( std::vector<TRoleVec>::iterator q = subCompositions.begin(), q_end = subCompositions.end(); q != q_end; ++q )
		addSubCompositionAutomaton ( *q, RInProcess );

	// check for the transitivity
	if ( isTransitive() )
		A.addTransitionSafe ( A.final(), new RATransition(A.initial()) );

	// here automaton is complete
	A.setCompleted();

	if ( likely(!isBottom()) )	// FIXME!! for now; need better Top/Bot synonyms processing
	for ( ClassifiableEntry::iterator p = told_begin(), p_end = told_end(); p != p_end; ++p )
	{
		TRole* R = resolveSynonym(static_cast<TRole*>(*p));
		if ( R->isTop() )	// do not propagate anything to a top-role
			continue;
		R->addSubRoleAutomaton(this);
		if ( hasSpecialDomain() )
			R->SpecialDomain = true;
	}

	// finish processing role
	RInProcess.erase(this);
}

/// add automaton for a role composition
void
TRole :: addSubCompositionAutomaton ( TRoleVec& RS, TRoleSet& RInProcess )
{
	// first preprocess the role chain
	preprocessComposition(RS);

	if ( RS.empty() )	// fallout from transitivity axiom
		return;

	// here we need a special treatment for R&D
	SpecialDomain = true;

	// tune iterators and states
	const_iterator p = RS.begin(), p_last = RS.end() - 1;
	RAState from = A.initial(), to = A.final();

	if ( RS.front() == this )
	{
		++p;
		from = A.final();
	}
	else if ( RS.back() == this )
	{
		--p_last;
		to = A.initial();
	}

	// make sure the role chain contain at least one element
	fpp_assert ( p <= p_last );

	// create a chain
	bool oSafe = false;	// we couldn't assume that the current role automaton is i- or o-safe
	A.initChain(from);
	for ( ; p != p_last; ++p )
		oSafe = A.addToChain ( completeAutomatonByRole ( *p, RInProcess ), oSafe );

	// add the last automaton to chain
	A.addToChain ( completeAutomatonByRole ( *p, RInProcess ), oSafe, to );
}