File: tRole.h

package info (click to toggle)
fact%2B%2B 1.6.5~dfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, forky, sid, trixie
  • size: 4,496 kB
  • sloc: cpp: 28,000; java: 22,674; xml: 3,268; makefile: 102; ansic: 61; sh: 3
file content (565 lines) | stat: -rw-r--r-- 19,148 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
/* This file is part of the FaCT++ DL reasoner
Copyright (C) 2003-2015 Dmitry Tsarkov and The University of Manchester
Copyright (C) 2015-2016 Dmitry Tsarkov

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
*/

#ifndef TROLE_H
#define TROLE_H

#include <set>
#include <vector>

#include "globaldef.h"	// sorted reasoning
#include "BiPointer.h"
#include "dltree.h"
#include "taxNamEntry.h"
#include "tLabeller.h"
#include "RAutomaton.h"
#include "eFPPNonSimpleRole.h"
#include "eFPPCycleInRIA.h"

#ifdef RKG_USE_SORTED_REASONING
#	include "mergableLabel.h"
#endif

class TBox;
class RoleMaster;
class Taxonomy;
class SaveLoadManager;

/// Define class with all information about DL role
class TRole: public ClassifiableEntry
{
	friend class RoleMaster;

private:	// no copy
		/// no empty c'tor
	TRole ();
		/// no copy c'tor
	TRole ( const TRole& );
		/// no assignment
	TRole& operator = ( const TRole& );

protected:	// types
		/// Class for values that can change wrt ontology
	class TKnownValue
	{
	protected:	// members
			/// flag value
		bool value;
			/// whether flag set or not
		bool known;

	public:		// interface
			/// init c'tor
		TKnownValue ( bool val = false ) : value(val), known(false) {}
			/// empty d'tor
		~TKnownValue ( void ) {}

			/// @return true iff the value is known to be set
		bool isKnown ( void ) const { return known; }
			/// @return the value
		bool getValue ( void ) const { return value; }
			/// set the value; it is now known
		void setValue ( bool val ) { value = val; known = true; }
	}; // TKnownValue

public:		// types
		/// vector of roles
	typedef std::vector<TRole*> TRoleVec;
		/// RO iterator over role vector
	typedef TRoleVec::const_iterator const_iterator;
		/// set of roles
	typedef std::set<TRole*> TRoleSet;
		/// bitmap for roles
	typedef std::vector<bool> TRoleBitMap;

protected:	// members
		/// role that are inverse of given one
	TRole* Inverse;

		/// Domain of role as a concept description; default NULL
	DLTree* pDomain;
		/// Domain of role as a concept description; default NULL
	DLTree* pSpecialDomain;
		/// Domain of role as a pointer to DAG entry
	BipolarPointer bpDomain;
		/// domain in the form AR.Range for the complex roles
	BipolarPointer bpSpecialDomain;

		/// pointer to role's functional definition DAG entry (or just TOP)
	BipolarPointer Functional;

		/// is role relevant to current query
	TLabeller::LabelType rel;

#ifdef RKG_USE_SORTED_REASONING
		/// label of a domain (inverse role is used for a range label)
	mergableLabel domLabel;
#endif

	// for later filling
	// FIXME!! const was removed for Relevance setting
	TRoleVec Ancestor, Descendant;
		/// set of the most functional super-roles
	TRoleVec TopFunc;
		/// set of the roles that are disjoint with a given one
	TRoleSet Disjoint;
		/// all compositions in the form R1*R2*\ldots*Rn [= R
	std::vector<TRoleVec> subCompositions;

		/// bit-vector of all parents
	TRoleBitMap AncMap;
		/// bit-vector of all roles disjoint with current
	TRoleBitMap DJRoles;

		/// automaton for role
	RoleAutomaton A;

		/// value for functionality
	TKnownValue Functionality;
		/// value for symmetry
	TKnownValue Symmetry;
		/// value for asymmetricity
	TKnownValue Asymmetry;
		/// value for transitivity
	TKnownValue Transitivity;
		/// value for reflexivity
	TKnownValue Reflexivity;
		/// value for reflexivity
	TKnownValue Irreflexivity;
		/// flag to show that this role needs special R&D processing
	bool SpecialDomain;

protected:	// methods
	// support for Anc/Desc filling and such

		/// check if the role is REALLY topmost-functional (internal-use only)
	bool isRealTopFunc ( void ) const;
		/// set up TopFunc member properly (internal-use only)
	void initTopFunc ( void );
		/// init map of all disjoint roles
	void initDJMap ( void );

		/// eliminate told role cycle, carrying aux arrays of processed roles and synonyms
	TRole* eliminateToldCycles ( TRoleSet& RInProcess, TRoleVec& ToldSynonyms );

	// support for automaton construction

		/// complete role automaton; keep track of processed roles in RINPROCESS
	void completeAutomaton ( TRoleSet& RInProcess );
		/// replace RoR [= R with Trans(R), replace synonyms in RS
	void preprocessComposition ( TRoleVec& RS );
		/// add transition to automaton with the role
	void addTrivialTransition ( const TRole* r )
		{ A.addTransitionSafe ( A.initial(), new RATransition ( A.final(), r ) ); }
		/// add automaton of a sub-role to a given one
	void addSubRoleAutomaton ( const TRole* R )
	{
		if ( this != R )	// non-trivial addition
			A.addRA(R->getAutomaton());
	}
		/// get an automaton by a (possibly synonymical) role
	const RoleAutomaton& completeAutomatonByRole ( TRole* R, TRoleSet& RInProcess ) const
	{
		fpp_assert ( !R->isSynonym() );	// no synonyms here
		fpp_assert ( R != this );		// no case ...*S*... [= S
		R->completeAutomaton(RInProcess);
		return R->getAutomaton();
	}
		/// add automaton for a role composition; simplify composition
	void addSubCompositionAutomaton ( TRoleVec& RS, TRoleSet& RInProcess );

		/// check (and correct) case whether R != S for R [= S
	void checkHierarchicalDisjoint ( TRole* R );
		/// check whether there is a sub-property with special domain; propagate this
	void checkSpecialDomain ( void )
	{
		if ( hasSpecialDomain() )
			return;
		for ( const_iterator p = begin_desc(), p_end = end_desc(); p != p_end; ++p )
			if ( (*p)->hasSpecialDomain() )
			{
				SpecialDomain = true;
				return;
			}
	}

public:		// interface
		/// the only c'tor
	TRole ( const std::string& name );
		/// d'tor
	virtual ~TRole ( void );

		/// get (unsigned) unique index of the role
	unsigned int getIndex ( void ) const
	{
		int i = 2*getId();
		return i > 0
			? (unsigned int)i
			: (unsigned int)(1-i);
	}

	// synonym operations

		/// copy role information (like transitivity, functionality, R&D etc) to synonym
	void addFeaturesToSynonym ( void );

	// inverse of the role

		/// get inverse of given role (non-const version)
	TRole* inverse ( void ) { fpp_assert (Inverse != NULL); return resolveSynonym(Inverse); }
		/// get inverse of given role (const version)
	const TRole* inverse ( void ) const { fpp_assert (Inverse != NULL); return resolveSynonym(Inverse); }
		/// get real inverse of a role (RO)
	const TRole* realInverse ( void ) const { fpp_assert (Inverse != NULL); return Inverse; }
		/// set inverse to given role
	void setInverse ( TRole* p ) { fpp_assert (Inverse == NULL); Inverse = p; }

	// different flags

		/// distinguish data- and non-data role
	FPP_ADD_FLAG(DataRole,0x10);

	// simple

		// @return true iff the role is simple
	bool isSimple ( void ) const { return A.isSimple(); }

	// functionality

		/// test if role is functional (ie, have some functional ancestors)
	bool isFunctional ( void ) const { return Functionality.getValue(); }
		/// check whether the functionality of a role is known
	bool isFunctionalityKnown ( void ) const { return Functionality.isKnown(); }
		/// check if the role is topmost-functional (ie, has no functional ancestors).
	bool isTopFunc ( void ) const
	{	// check for emptyness is here due to case where a role is determined to be a functional
		return !TopFunc.empty() && *TopFunc.begin() == this;
	}
		/// set role functionality value
	void setFunctional ( bool value ) { Functionality.setValue(value); }
		/// mark role (topmost) functional
	void setFunctional ( void )
	{
		if ( TopFunc.empty() )
			TopFunc.push_back(this);
		setFunctional(true);
	}
		/// set functional attribute to given value (functional DAG vertex)
	void setFunctional ( BipolarPointer fNode ) { Functional = fNode; }
		/// get the Functional DAG vertex
	BipolarPointer getFunctional ( void ) const { return Functional; }

	// transitivity

		/// check whether the role is transitive
	bool isTransitive ( void ) const { return Transitivity.getValue(); }
		/// check whether the transitivity of a role is known
	bool isTransitivityKnown ( void ) const { return Transitivity.isKnown(); }
		/// set the transitivity of both role and it's inverse
	void setTransitive ( bool value = true ) { Transitivity.setValue(value); inverse()->Transitivity.setValue(value); }

	// symmetry

		/// check whether the role is symmetric
	bool isSymmetric ( void ) const { return Symmetry.getValue(); }
		/// check whether the symmetry of a role is known
	bool isSymmetryKnown ( void ) const { return Symmetry.isKnown(); }
		/// set the symmetry of both role and it's inverse
	void setSymmetric ( bool value = true ) { Symmetry.setValue(value); inverse()->Symmetry.setValue(value); }

	// asymmetry

		/// check whether the role is asymmetric
	bool isAsymmetric ( void ) const { return Asymmetry.getValue(); }
		/// check whether the asymmetry of a role is known
	bool isAsymmetryKnown ( void ) const { return Asymmetry.isKnown(); }
		/// set the asymmetry of both role and it's inverse
	void setAsymmetric ( bool value = true ) { Asymmetry.setValue(value); inverse()->Asymmetry.setValue(value); }

	// reflexivity

		/// check whether the role is reflexive
	bool isReflexive ( void ) const { return Reflexivity.getValue(); }
		/// check whether the reflexivity of a role is known
	bool isReflexivityKnown ( void ) const { return Reflexivity.isKnown(); }
		/// set the reflexivity of both role and it's inverse
	void setReflexive ( bool value = true ) { Reflexivity.setValue(value); inverse()->Reflexivity.setValue(value); }

	// irreflexivity

		/// check whether the role is irreflexive
	bool isIrreflexive ( void ) const { return Irreflexivity.getValue(); }
		/// check whether the irreflexivity of a role is known
	bool isIrreflexivityKnown ( void ) const { return Irreflexivity.isKnown(); }
		/// set the irreflexivity of both role and it's inverse
	void setIrreflexive ( bool value = true ) { Irreflexivity.setValue(value); inverse()->Irreflexivity.setValue(value); }

	// relevance

		/// is given role relevant to given Labeller's state
	bool isRelevant ( const TLabeller& lab ) const { return lab.isLabelled(rel); }
		/// make given role relevant to given Labeller's state
	void setRelevant ( const TLabeller& lab ) { lab.set(rel); }

#ifdef RKG_USE_SORTED_REASONING
	// Sorted reasoning interface

		/// get label of the role's domain
	mergableLabel& getDomainLabel ( void ) { return domLabel; }
		/// get label of the role's range
	mergableLabel& getRangeLabel ( void ) { return inverse()->getDomainLabel(); }
		/// merge label of given role and all its super-roles
	void mergeSupersDomain ( void );
#endif

	// domain and range

		/// add p to domain of the role
	void setDomain ( DLTree* p )
	{
		if ( equalTrees ( pDomain, p ) )	// not just a CName
			deleteTree(p);	// usual case when you have a name for inverse role
		else if ( isFunctionalExpr ( p, this ) )
		{
			setFunctional();
			deleteTree(p);	// functional restriction in the role domain means the role is functional
		}
		else
			pDomain = createSNFReducedAnd ( pDomain, p );
	}
		/// add p to range of the role
	void setRange ( DLTree* p ) { inverse()->setDomain(p); }

		/// get domain-as-a-tree of the role
	DLTree* getTDomain ( void ) const { return pDomain; }
		/// get range-as-a-tree of the role
	DLTree* getTRange ( void ) const { return inverse()->pDomain; }

		/// get special-domain-as-a-tree
	DLTree* getTSpecialDomain ( void ) { return pSpecialDomain; }

#ifdef RKG_UPDATE_RND_FROM_SUPERROLES
		/// merge to Domain all domains from super-roles
	void collectDomainFromSupers ( void )
	{
		for ( iterator p = begin_anc(); p != end_anc(); ++p )
			setDomain ( clone((*p)->getTDomain()) );
	}
#endif

		/// set domain-as-a-bipointer to a role
	void setBPDomain ( BipolarPointer p ) { bpDomain = p; }
		/// get domain-as-a-bipointer of the role
	BipolarPointer getBPDomain ( void ) const { return bpDomain; }
		/// get range-as-a-bipointer of the role
	BipolarPointer getBPRange ( void ) const { return inverse()->bpDomain; }
		/// @return true iff role has a special domain
	bool hasSpecialDomain ( void ) const { return SpecialDomain; }
		/// init special domain; call this only after *ALL* the domains are known
	void initSpecialDomain ( void )
	{
		if ( !hasSpecialDomain() || getTRange() == NULL )
			pSpecialDomain = createTop();
		else
			pSpecialDomain = createSNFForall ( createRole(this), clone(getTRange()) );
	}
		/// set the special domain value
	void setSpecialDomain ( BipolarPointer bp ) { bpSpecialDomain = bp; }
		/// get special domain value
	BipolarPointer getSpecialDomain ( void ) const { return bpSpecialDomain; }
		/// get special range value
	BipolarPointer getSpecialRange ( void ) const { return inverse()->bpSpecialDomain; }

	// disjoint roles

		/// set R and THIS as a disjoint; use it after Anc/Desc are determined
	void addDisjointRole ( TRole* R )
	{
		Disjoint.insert(R);
		for ( const_iterator p = R->begin_desc(), p_end = R->end_desc(); p != p_end; ++p )
		{
			Disjoint.insert(*p);
			(*p)->Disjoint.insert(this);
		}
	}
		/// check (and correct) case whether R != S for R [= S
	void checkHierarchicalDisjoint ( void )
	{
		checkHierarchicalDisjoint(this);
		if ( isReflexive() )	// for reflexive roles check for R^- is necessary
			checkHierarchicalDisjoint(inverse());
	}
		/// check whether a role is disjoint with anything
	bool isDisjoint ( void ) const { return !Disjoint.empty(); }
		/// check whether a role is disjoint with R
	bool isDisjoint ( const TRole* r ) const { return DJRoles[r->getIndex()]; }

	// role relations checking

		/// two roles are the same iff thy are synonyms of the same role
	bool operator == ( const TRole& r ) const { return this == &r; }
		/// check if role is a strict sub-role of R
	bool operator < ( const TRole& r ) const { return (isDataRole() == r.isDataRole()) && AncMap[r.getIndex()]; }
		/// check if role is a non-strict sub-role of R
	bool operator <= ( const TRole& r ) const { return (*this == r) || (*this < r); }
		/// check if role is a strict super-role of R
	bool operator > ( const TRole& r ) const { return r < *this; }
		/// check if role is a non-strict super-role of R
	bool operator >= ( const TRole& r ) const { return (*this == r) || (*this > r); }

	// iterators

		/// get access to all super-roles via iterator
	const_iterator begin_anc ( void ) const { return Ancestor.begin(); }
	const_iterator end_anc ( void ) const { return Ancestor.end(); }
		/// get access to all sub-roles via iterator
	const_iterator begin_desc ( void ) const { return Descendant.begin(); }
	const_iterator end_desc ( void ) const { return Descendant.end(); }
		/// get access to the func super-roles w/o func parents via iterator
	const_iterator begin_topfunc ( void ) const { return TopFunc.begin(); }
	const_iterator end_topfunc ( void ) const { return TopFunc.end(); }

		/// fills BITMAP with the role's ancestors
	void addAncestorsToBitMap ( TRoleBitMap& bitmap ) const
	{
		fpp_assert ( !bitmap.empty() );	// use only after the size is known
		for ( const_iterator p = begin_anc(), p_end = end_anc(); p != p_end; ++p )
			bitmap[(*p)->getIndex()] = true;
	}

	// automaton construction

		/// add composition to a role
	void addComposition ( const DLTree* tree )
	{
		TRoleVec RS;
		fillsComposition ( RS, tree );
		subCompositions.push_back(RS);
	}
		/// get access to a RA for the role
	const RoleAutomaton& getAutomaton ( void ) const { return A; }

	// completing internal constructions

		/// eliminate told role cycle
	TRole* eliminateToldCycles ( void )
	{
		TRoleSet RInProcess;
		TRoleVec ToldSynonyms;
		return eliminateToldCycles ( RInProcess, ToldSynonyms );
	}
		/// init ancestors and descendants using Taxonomy
	void initADbyTaxonomy ( Taxonomy* pTax, size_t ADMapSize );
		/// init other fields that requires Anc/Desc for all roles
	void postProcess ( void );
		/// fills role composition by given TREE
	void fillsComposition ( TRoleVec& Composition, const DLTree* tree ) const;
		/// complete role automaton
	void completeAutomaton ( size_t nRoles )
	{
		TRoleSet RInProcess;
		completeAutomaton(RInProcess);
		A.setup ( nRoles, isDataRole() );
	}
		/// check whether role description is consistent
	void consistent ( void ) const
	{
		if ( isSimple() )		// all simple roles are consistent
			return;
		if ( isFunctional() )	// non-simple role can not be functional
			throw EFPPNonSimpleRole(getName());
		if ( isDataRole() )		// data role can not be non-simple
			throw EFPPNonSimpleRole(getName());
		if ( isDisjoint() )		// non-simple role can not be disjoint with any role
			throw EFPPNonSimpleRole(getName());
	}

	// output

		/// print role to given stream
	void Print ( std::ostream& o ) const;

	// save/load interface; implementation is in SaveLoad.cpp

		/// save entry
	virtual void Save ( SaveLoadManager& m ) const;
		/// load entry
	virtual void Load ( SaveLoadManager& m );
}; // TRole

/// @return R or -R for T in the form (inv ... (inv R)...)
inline
TRole*
resolveRoleHelper ( const DLTree* t )
{
	if ( t == NULL )			// empty tree -- error
		throw EFaCTPlusPlus("Role expression expected");
	switch ( t->Element().getToken() )
	{
	case RNAME:	// role name
	case DNAME:	// data role name
		return static_cast<TRole*>(t->Element().getNE());
	case INV:	// inversion
		return resolveRoleHelper(t->Left())->inverse();
	default:	// error
		throw EFaCTPlusPlus("Invalid role expression");
	}
}

/// @return R or -R for T in the form (inv ... (inv R)...); remove synonyms
inline TRole* resolveRole ( const DLTree* t ) { return resolveSynonym(resolveRoleHelper(t)); }

//--------------------------------------------------
//	TRole implementation
//--------------------------------------------------
inline TRole :: TRole ( const std::string& name )
	: ClassifiableEntry(name)
	, Inverse(NULL)
	, pDomain(NULL)
	, pSpecialDomain(NULL)
	, bpDomain(bpINVALID)
	, bpSpecialDomain(bpINVALID)
	, Functional(bpINVALID)
	, rel(0)
	, SpecialDomain(false)
{
	setCompletelyDefined (true);	// role hierarchy is completely defined by it's parents
	addTrivialTransition (this);
}

inline TRole :: ~TRole ( void )
{
	deleteTree(pDomain);
	deleteTree(pSpecialDomain);
	if ( Inverse != NULL && Inverse != this )
	{
		Inverse->Inverse = NULL;
		delete Inverse;
	}
}

//--------------------------------------------------
//	RAStateTransitions implementation depending on TRole
//--------------------------------------------------

/// check whether one of the transitions accept R
inline bool
RAStateTransitions :: recognise ( const TRole* R ) const { return R != NULL && R->isDataRole() == DataRole && ApplicableRoles.in(R->getIndex()); }

#endif