File: bench_rabitq.py

package info (click to toggle)
faiss 1.12.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 8,572 kB
  • sloc: cpp: 85,627; python: 27,889; sh: 905; ansic: 425; makefile: 41
file content (337 lines) | stat: -rw-r--r-- 9,188 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
#!/usr/bin/env -S grimaldi --kernel faiss
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

# fmt: off
# flake8: noqa

# NOTEBOOK_NUMBER: N7030784 (685760243832285)

""":py"""
import timeit
from collections import defaultdict

import faiss
from faiss.contrib.datasets import SyntheticDataset

""":py"""
ds: SyntheticDataset = SyntheticDataset(256, 1_000_000, 1_000_000, 10_000)
nlist: int = 1000
qb: int = 8
# This will contain <"index name", ([recalls],[speeds],[labels (the k)])>
recall_speed_data = defaultdict(lambda: [[], [], []])
# This will contain <"index name", ([recalls],[memory for this index])>
recall_memory_data = defaultdict(lambda: [[], []])

""":py"""
# Helpers


def trials(index, xq, k):
    trials = 10
    result = timeit.timeit(
        stmt="index.search(xq, k)",
        number=trials,
        globals={"index": index, "xq": xq, "k": k},
    )
    return result / trials * 1000.0  # ms


def trials_ivf(index, xq, k, params=None):
    trials = 10
    result = timeit.timeit(
        stmt="search_with_parameters(index, xq, k, params)",
        number=trials,
        globals={
            "search_with_parameters": faiss.search_with_parameters,
            "index": index,
            "xq": xq,
            "k": k,
            "params": params,
        },
    )
    return result / trials * 1000.0  # ms


def compute_recall(ground_truth_I, predicted_I):
    n_queries, k = ground_truth_I.shape
    intersection = faiss.eval_intersection(ground_truth_I, predicted_I)
    recall = intersection / (n_queries * k)
    return recall


def create_index(ds, factory_string):
    index = faiss.index_factory(ds.d, factory_string)
    index.train(ds.get_train())
    index.add(ds.get_database())
    return index


# pyre-ignore
def handle_index(prefix, index, ds, mem, k):
    gt_I = ds.get_groundtruth(k)
    _, I_res = index.search(ds.get_queries(), k)
    avg_speed = trials(index, ds.get_queries(), k)
    recall = compute_recall(gt_I, I_res)
    print(
        f"{prefix} recall@{k}: {recall}.  Average speed: {avg_speed:.1f}ms.  Memory: {mem/1e6:.3f}MB"
    )
    recall_speed_data[prefix][0].append(recall)
    recall_speed_data[prefix][1].append(avg_speed)
    recall_speed_data[prefix][2].append(f"k={k}")
    recall_memory_data[prefix][0].append(recall)
    recall_memory_data[prefix][1].append(mem)


# pyre-ignore
def handle_ivf_index(prefix, index, ds, mem, k, params):
    gt_I = ds.get_groundtruth(k)
    for nprobe in 4, 16, 32:
        params.nprobe = nprobe
        _, I_res = faiss.search_with_parameters(index, ds.get_queries(), k, params)
        avg_speed = trials_ivf(index, ds.get_queries(), k, params)
        recall = compute_recall(gt_I, I_res)
        print(
            f"{prefix} nprobe={nprobe}: recall@{k}: {recall}.  Average speed: {avg_speed:.1f}ms.  Memory: {mem/1e6:.3f}MB"
        )
        recall_speed_data[prefix][0].append(recall)
        recall_speed_data[prefix][1].append(avg_speed)
        recall_speed_data[prefix][2].append(f"k={k}, nprobe={nprobe}")
        recall_memory_data[prefix][0].append(recall)
        recall_memory_data[prefix][1].append(mem)


# pyre-ignore
def vary_k_nprobe_measuring_recall_and_memory(prefix, index, ds, mem):
    classname = type(index).__name__
    for k in 1, 10, 100:
        if classname in [
            "IndexRaBitQ",
            "IndexPQFastScan",
            "IndexHNSWFlat",
            "IndexScalarQuantizer",
        ]:
            handle_index(prefix, index, ds, mem, k)
        elif classname in [
            "IndexIVFRaBitQ",
            "IndexPreTransform",
            "IndexIVFPQFastScan",
            "IndexIVFScalarQuantizer",
        ]:
            if (
                classname == "IndexIVFPQFastScan"
                or classname == "IndexIVFScalarQuantizer"
            ):
                params = faiss.IVFSearchParameters()
            else:
                params = faiss.IVFRaBitQSearchParameters()
                params.qb = qb
            handle_ivf_index(prefix, index, ds, mem, k, params)

""":py '605360559215064'"""
# IndexRaBitQ

fac_s = "RaBitQ"
non_ivf_rbq = faiss.index_factory(ds.d, fac_s)
non_ivf_rbq.qb = qb
non_ivf_rbq.train(ds.get_train())
non_ivf_rbq.add(ds.get_database())
mem = non_ivf_rbq.code_size * non_ivf_rbq.ntotal

vary_k_nprobe_measuring_recall_and_memory(fac_s, non_ivf_rbq, ds, mem)

del non_ivf_rbq

""":py '3928150077498381'"""
# IndexIVFRaBitQ with no random rotation

fac_s = f"IVF{nlist},RaBitQ"
rbq1 = faiss.index_factory(ds.d, fac_s)
rbq1.qb = qb
rbq1.train(ds.get_train())
rbq1.add(ds.get_database())
mem = rbq1.code_size * rbq1.ntotal

vary_k_nprobe_measuring_recall_and_memory(fac_s, rbq1, ds, mem)

del rbq1

""":py '1484145352968190'"""
# IndexIVFRaBitQ with random rotation

fac_s = f"IVF{nlist},RaBitQ"
rbq2 = faiss.index_factory(ds.d, fac_s)
rbq2.qb = qb
rrot = faiss.RandomRotationMatrix(ds.d, ds.d)
rrot.init(123)
index_pt = faiss.IndexPreTransform(rrot, rbq2)
index_pt.train(ds.get_train())
index_pt.add(ds.get_database())
mem = rbq2.code_size * index_pt.ntotal

vary_k_nprobe_measuring_recall_and_memory(fac_s + "_RROT", index_pt, ds, mem)

del index_pt

""":py '644702398382829'"""
# IndexScalarQuantizer

for M in [4, 6, 8]:
    fac_s = f"SQ{M}"
    sq = create_index(ds, fac_s)
    mem = sq.code_size * sq.ntotal
    vary_k_nprobe_measuring_recall_and_memory("Index" + fac_s, sq, ds, mem)

""":py '1347502839702520'"""
# IndexIVFScalarQuantizer

for M in [4, 6]:  # 8 seems to have no recall improvement in this dataset.
    fac_s = f"IVF{nlist},SQ{M}"
    sq = create_index(ds, fac_s)
    mem = sq.code_size * sq.ntotal
    vary_k_nprobe_measuring_recall_and_memory(fac_s, sq, ds, mem)

""":py '1350039419637535'"""
# PQFS

for m in [32, 64, 128]:
    fac_s = f"PQ{m}x4fs"
    pqfs = create_index(ds, fac_s)
    mem = pqfs.code_size * pqfs.ntotal
    vary_k_nprobe_measuring_recall_and_memory(fac_s, pqfs, ds, mem)
    del pqfs

""":py '2549074352105737'"""
# IVFPQFS

for m in [32, 64, 128]:
    fac_s = f"IVF{nlist},PQ{m}x4fs"
    ivf_pqfs = create_index(ds, fac_s)
    mem = ivf_pqfs.code_size * ivf_pqfs.ntotal
    vary_k_nprobe_measuring_recall_and_memory(fac_s, ivf_pqfs, ds, mem)
    del ivf_pqfs

""":py '3933359133572530'"""
# HNSW

for m in [8, 16, 32]:
    fac_s = f"HNSW{m}"
    index = create_index(ds, fac_s)
    storage = faiss.downcast_index(index.storage)
    mem = (
        storage.ntotal * storage.code_size
        + index.hnsw.neighbors.size() * 4
        + index.hnsw.offsets.size() * 8
    )
    vary_k_nprobe_measuring_recall_and_memory(fac_s, index, ds, mem)
    del index

""":py"""
import matplotlib.pyplot as plt
from adjustText import adjust_text


# Specific colors that stand out against each other for this many data points.
colors = [
    "black",
    "darkgray",
    "darkred",
    "red",
    "orange",
    "wheat",
    "olive",
    "yellow",
    "lime",
    "teal",
    "cyan",
    "skyblue",
    "royalblue",
    "navy",
    "darkviolet",
    "fuchsia",
    "deeppink",
    "pink",
]

""":py '1023372579245229'"""
slowest_speed = 0.0
for key, vals in recall_speed_data.items():
    for speed in vals[1]:
        slowest_speed = max(slowest_speed, speed)

plt.axis([0, 1.0, 0, slowest_speed + 100.0])  # [xmin, xmax, ymin, ymax]
for i, (key, vals) in enumerate(recall_speed_data.items()):
    recalls = vals[0]
    speeds = vals[1]
    plt.plot(
        recalls,
        speeds,
        linestyle=" ",
        marker="o",
        color=colors[i],
        label=key,
        markersize=15,
    )
    # Adding k and nprobe labels makes the diagram very busy, but can be enabled by uncommenting the following lines:
    # ks = vals[2]
    # texts = []
    # for i, (x_val, y_val) in enumerate(zip(recalls, speeds)):
    #     texts.append(plt.text(x_val, y_val, ks[i]))
    # # Adjust text labels
    # adjust_text(
    #     texts,
    #     arrowprops=dict(arrowstyle="-", color="black", lw=0.5),
    #     force_text=(0.1, 0.25),
    #     force_points=(0.2, 0.5),
    #     only_move={"points": "xy"},
    # )

plt.title("Recall vs Speed")
plt.xlabel("Recall")
plt.ylabel("Speed")
plt.legend()
plt.show()

""":py '1354989919068149'"""
largest_mem = 0.0
for key, vals in recall_memory_data.items():
    for mem in vals[1]:
        largest_mem = max(largest_mem, mem)

plt.ylim(1e6, 1e10)
plt.yscale("log", base=10)

for i, (key, vals) in enumerate(recall_memory_data.items()):
    recalls = vals[0]
    mems = vals[1]
    plt.plot(
        recalls,
        mems,
        linestyle=" ",
        marker="o",
        color=colors[i],
        label=key,
        markersize=10,
    )

    texts = []
    if i == 0:
        texts.append(plt.text(recalls[0], mems[0], "RaBitQ"))
        texts.append(plt.text(recalls[1], mems[1], "RaBitQ"))
    adjust_text(
        texts,
        arrowprops=dict(arrowstyle="-", color="black", lw=0.5),
        force_text=(0.5, 0.25),
        force_points=(1.0, 1.5),
        expand_points=(5.0, 10.0),
    )

plt.title("Recall vs Memory")
plt.xlabel("Recall")
plt.ylabel("Memory")
plt.legend()
plt.show()

""":py"""