File: bench_vector_ops.py

package info (click to toggle)
faiss 1.12.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 8,572 kB
  • sloc: cpp: 85,627; python: 27,889; sh: 905; ansic: 425; makefile: 41
file content (84 lines) | stat: -rw-r--r-- 2,163 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
#! /usr/bin/env python2
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

from __future__ import print_function
import numpy as np
import faiss
import time

swig_ptr = faiss.swig_ptr

if False:
    a = np.arange(10, 14).astype('float32')
    b = np.arange(20, 24).astype('float32')

    faiss.fvec_inner_product (swig_ptr(a), swig_ptr(b), 4)

    1/0

xd = 100
yd = 1000000

np.random.seed(1234)

faiss.omp_set_num_threads(1)

print('xd=%d yd=%d' % (xd, yd))

print('Running inner products test..')
for d in 3, 4, 12, 36, 64:

    x = faiss.rand(xd * d).reshape(xd, d)
    y = faiss.rand(yd * d).reshape(yd, d)

    distances = np.empty((xd, yd), dtype='float32')

    t0 = time.time()
    for i in range(xd):
        faiss.fvec_inner_products_ny(swig_ptr(distances[i]),
                                     swig_ptr(x[i]),
                                     swig_ptr(y),
                                     d, yd)
    t1 = time.time()

    # sparse verification
    ntry = 100
    num, denom = 0, 0
    for t in range(ntry):
        xi = np.random.randint(xd)
        yi = np.random.randint(yd)
        num += abs(distances[xi, yi] - np.dot(x[xi], y[yi]))
        denom += abs(distances[xi, yi])

    print('d=%d t=%.3f s diff=%g' % (d, t1 - t0, num / denom))


print('Running L2sqr test..')
for d in 3, 4, 12, 36, 64:

    x = faiss.rand(xd * d).reshape(xd, d)
    y = faiss.rand(yd * d).reshape(yd, d)

    distances = np.empty((xd, yd), dtype='float32')

    t0 = time.time()
    for i in range(xd):
        faiss.fvec_L2sqr_ny(swig_ptr(distances[i]),
                            swig_ptr(x[i]),
                            swig_ptr(y),
                            d, yd)
    t1 = time.time()

    # sparse verification
    ntry = 100
    num, denom = 0, 0
    for t in range(ntry):
        xi = np.random.randint(xd)
        yi = np.random.randint(yd)
        num += abs(distances[xi, yi] - np.sum((x[xi] - y[yi]) ** 2))
        denom += abs(distances[xi, yi])

    print('d=%d t=%.3f s diff=%g' % (d, t1 - t0, num / denom))