1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <gtest/gtest.h>
#include <chrono>
#include <cstdint>
#include <random>
#include <sstream>
#include <string>
#include <unordered_set>
#include <vector>
#include <faiss/utils/approx_topk/approx_topk.h>
#include <faiss/impl/FaissException.h>
#include <faiss/utils/Heap.h>
//
using namespace faiss;
//
template <uint32_t NBUCKETS, uint32_t N>
void test_approx_topk(
const uint32_t beamSize,
const uint32_t nPerBeam,
const uint32_t k,
const uint32_t nDatasetsToTest,
const bool verbose) {
if (verbose) {
printf("-----------\n");
}
// generate random data
std::default_random_engine rng(123);
std::uniform_real_distribution<float> u(0, 1);
// matches
size_t nMatches = 0;
// the element was completely missed in approx version.
size_t nMissed = 0;
// the element is available
size_t nAvailable = 0;
// the distance is the same, but the index is different.
size_t nSoftMismatches = 0;
// the distances are different
size_t nHardMismatches = 0;
// error of distances
double sqrError = 0.0;
//
double timeBaseline = 0.0;
double timeApprox = 0.0;
for (size_t iDataset = 0; iDataset < nDatasetsToTest; iDataset++) {
const size_t n = (size_t)(nPerBeam)*beamSize;
std::vector<float> distances(n, 0);
for (size_t i = 0; i < n; i++) {
distances[i] = u(rng);
}
//
using C = CMax<float, int>;
// do a regular beam search
std::vector<float> baselineDistances(k, C::neutral());
std::vector<int> baselineIndices(k, -1);
auto startBaseline = std::chrono::high_resolution_clock::now();
heap_addn<C>(
k,
baselineDistances.data(),
baselineIndices.data(),
distances.data(),
nullptr,
nPerBeam * beamSize);
auto endBaseline = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> diffBaseline =
endBaseline - startBaseline;
timeBaseline += diffBaseline.count();
heap_reorder<C>(k, baselineDistances.data(), baselineIndices.data());
// do an approximate beam search
std::vector<float> approxDistances(k, C::neutral());
std::vector<int> approxIndices(k, -1);
auto startApprox = std::chrono::high_resolution_clock::now();
try {
HeapWithBuckets<C, NBUCKETS, N>::bs_addn(
beamSize,
nPerBeam,
distances.data(),
k,
approxDistances.data(),
approxIndices.data());
} catch (const faiss::FaissException&) {
//
if (verbose) {
printf("Skipping the case.\n");
}
return;
}
auto endApprox = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> diffApprox = endApprox - startApprox;
timeApprox += diffApprox.count();
heap_reorder<C>(k, approxDistances.data(), approxIndices.data());
bool bGotMismatches = false;
// the error
for (uint32_t i = 0; i < k; i++) {
if (baselineDistances[i] != approxDistances[i]) {
nHardMismatches += 1;
double diff = baselineDistances[i] - approxDistances[i];
sqrError += diff * diff;
bGotMismatches = true;
if (verbose) {
printf("i=%d, bs.d=%f, bs.i=%d, app.d=%f, app.i=%d\n",
i,
baselineDistances[i],
baselineIndices[i],
approxDistances[i],
approxIndices[i]);
}
} else {
if (baselineIndices[i] != approxIndices[i]) {
nSoftMismatches += 1;
} else {
nMatches += 1;
}
}
}
if (bGotMismatches) {
if (verbose) {
printf("\n");
}
}
//
std::unordered_set<int> bsIndicesHS(
baselineIndices.cbegin(), baselineIndices.cend());
for (uint32_t i = 0; i < k; i++) {
auto itr = bsIndicesHS.find(approxIndices[i]);
if (itr != bsIndicesHS.cend()) {
nAvailable += 1;
} else {
nMissed += 1;
}
}
}
if (verbose) {
printf("%d, %d, %d, %d, %d, %d: %zu, %zu, %zu, %f, %zu, %zu, %f, %f\n",
NBUCKETS,
N,
beamSize,
nPerBeam,
k,
nDatasetsToTest,
nMatches,
nSoftMismatches,
nHardMismatches,
sqrError,
nAvailable,
nMissed,
timeBaseline,
timeApprox);
}
// just confirm that the error is not crazy
if (NBUCKETS * N * beamSize >= k) {
EXPECT_TRUE(nAvailable > nMissed);
} else {
// it is possible that the results are crazy here. Skip it.
}
}
//
TEST(testApproxTopk, COMMON) {
constexpr bool verbose = false;
//
const uint32_t nDifferentDatasets = 8;
uint32_t kValues[] = {1, 2, 3, 5, 8, 13, 21, 34};
for (size_t codebookBitSize = 8; codebookBitSize <= 10; codebookBitSize++) {
const uint32_t codebookSize = 1 << codebookBitSize;
for (const auto k : kValues) {
test_approx_topk<1 * 8, 3>(
1, codebookSize, k, nDifferentDatasets, verbose);
test_approx_topk<1 * 8, 3>(
k, codebookSize, k, nDifferentDatasets, verbose);
test_approx_topk<1 * 8, 2>(
1, codebookSize, k, nDifferentDatasets, verbose);
test_approx_topk<1 * 8, 2>(
k, codebookSize, k, nDifferentDatasets, verbose);
test_approx_topk<2 * 8, 2>(
1, codebookSize, k, nDifferentDatasets, verbose);
test_approx_topk<2 * 8, 2>(
k, codebookSize, k, nDifferentDatasets, verbose);
test_approx_topk<4 * 8, 2>(
1, codebookSize, k, nDifferentDatasets, verbose);
test_approx_topk<4 * 8, 2>(
k, codebookSize, k, nDifferentDatasets, verbose);
}
}
}
//
|