1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
|
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <cstdio>
#include <cstdlib>
#include <gtest/gtest.h>
#include <faiss/IndexBinaryFlat.h>
#include <faiss/utils/hamming.h>
TEST(BinaryFlat, accuracy) {
// dimension of the vectors to index
int d = 64;
// size of the database we plan to index
size_t nb = 1000;
// make the index object and train it
faiss::IndexBinaryFlat index(d);
std::vector<uint8_t> database(nb * (d / 8));
for (size_t i = 0; i < nb * (d / 8); i++) {
database[i] = rand() % 0x100;
}
{ // populating the database
index.add(nb, database.data());
}
size_t nq = 200;
{ // searching the database
std::vector<uint8_t> queries(nq * (d / 8));
for (size_t i = 0; i < nq * (d / 8); i++) {
queries[i] = rand() % 0x100;
}
int k = 5;
std::vector<faiss::idx_t> nns(k * nq);
std::vector<int> dis(k * nq);
index.search(nq, queries.data(), k, dis.data(), nns.data());
for (size_t i = 0; i < nq; ++i) {
faiss::HammingComputer8 hc(queries.data() + i * (d / 8), d / 8);
hamdis_t dist_min = hc.hamming(database.data());
for (size_t j = 1; j < nb; ++j) {
hamdis_t dist = hc.hamming(database.data() + j * (d / 8));
if (dist < dist_min) {
dist_min = dist;
}
}
EXPECT_EQ(dist_min, dis[k * i]);
}
}
}
|