1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
|
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <gtest/gtest.h>
#include <cstddef>
#include <cstdint>
#include <random>
#include <vector>
#include <faiss/utils/distances.h>
// reference implementations
void fvec_inner_products_ny_ref(
float* ip,
const float* x,
const float* y,
size_t d,
size_t ny) {
for (size_t i = 0; i < ny; i++) {
ip[i] = faiss::fvec_inner_product(x, y, d);
y += d;
}
}
void fvec_L2sqr_ny_ref(
float* dis,
const float* x,
const float* y,
size_t d,
size_t ny) {
for (size_t i = 0; i < ny; i++) {
dis[i] = faiss::fvec_L2sqr(x, y, d);
y += d;
}
}
// test templated versions of fvec_L2sqr_ny
TEST(TestFvecL2sqrNy, D2) {
// we're using int values in order to get 100% accurate
// results with floats.
std::default_random_engine rng(123);
std::uniform_int_distribution<int32_t> u(0, 32);
for (const auto dim : {2, 4, 8, 12}) {
std::vector<float> x(dim, 0);
for (size_t i = 0; i < x.size(); i++) {
x[i] = u(rng);
}
for (const auto nrows : {1, 2, 5, 10, 15, 20, 25}) {
std::vector<float> y(nrows * dim);
for (size_t i = 0; i < y.size(); i++) {
y[i] = u(rng);
}
std::vector<float> distances(nrows, 0);
faiss::fvec_L2sqr_ny(
distances.data(), x.data(), y.data(), dim, nrows);
std::vector<float> distances_ref(nrows, 0);
fvec_L2sqr_ny_ref(
distances_ref.data(), x.data(), y.data(), dim, nrows);
ASSERT_EQ(distances, distances_ref)
<< "Mismatching results for dim = " << dim
<< ", nrows = " << nrows;
}
}
}
// fvec_inner_products_ny
TEST(TestFvecInnerProductsNy, D2) {
// we're using int values in order to get 100% accurate
// results with floats.
std::default_random_engine rng(123);
std::uniform_int_distribution<int32_t> u(0, 32);
for (const auto dim : {2, 4, 8, 12}) {
std::vector<float> x(dim, 0);
for (size_t i = 0; i < x.size(); i++) {
x[i] = u(rng);
}
for (const auto nrows : {1, 2, 5, 10, 15, 20, 25}) {
std::vector<float> y(nrows * dim);
for (size_t i = 0; i < y.size(); i++) {
y[i] = u(rng);
}
std::vector<float> distances(nrows, 0);
faiss::fvec_inner_products_ny(
distances.data(), x.data(), y.data(), dim, nrows);
std::vector<float> distances_ref(nrows, 0);
fvec_inner_products_ny_ref(
distances_ref.data(), x.data(), y.data(), dim, nrows);
ASSERT_EQ(distances, distances_ref)
<< "Mismatching results for dim = " << dim
<< ", nrows = " << nrows;
}
}
}
TEST(TestFvecL2sqr, distances_L2_squared_y_transposed) {
// ints instead of floats for 100% accuracy
std::default_random_engine rng(123);
std::uniform_int_distribution<int32_t> uniform(0, 32);
// modulo 8 results - 16 is to repeat the loop in the function
int ny = 11; // this value will hit all the codepaths
for (const auto d : {1, 2, 3, 4, 5, 6, 7, 8, 16}) {
// initialize inputs
std::vector<float> x(d);
float x_sqlen = 0;
for (size_t i = 0; i < x.size(); i++) {
x[i] = uniform(rng);
x_sqlen += x[i] * x[i];
}
std::vector<float> y(d * ny);
std::vector<float> y_sqlens(ny, 0);
for (size_t i = 0; i < ny; i++) {
for (size_t j = 0; j < y.size(); j++) {
y[j] = uniform(rng);
y_sqlens[i] += y[j] * y[j];
}
}
// perform function
std::vector<float> true_distances(ny, 0);
for (size_t i = 0; i < ny; i++) {
float dp = 0;
for (size_t j = 0; j < d; j++) {
dp += x[j] * y[i + j * ny];
}
true_distances[i] = x_sqlen + y_sqlens[i] - 2 * dp;
}
std::vector<float> distances(ny);
faiss::fvec_L2sqr_ny_transposed(
distances.data(),
x.data(),
y.data(),
y_sqlens.data(),
d,
ny, // no need for special offset to test all lines of code
ny);
ASSERT_EQ(distances, true_distances)
<< "Mismatching fvec_L2sqr_ny_transposed results for d = " << d;
}
}
TEST(TestFvecL2sqr, nearest_L2_squared_y_transposed) {
// ints instead of floats for 100% accuracy
std::default_random_engine rng(123);
std::uniform_int_distribution<int32_t> uniform(0, 32);
// modulo 8 results - 16 is to repeat the loop in the function
int ny = 11; // this value will hit all the codepaths
for (const auto d : {1, 2, 3, 4, 5, 6, 7, 8, 16}) {
// initialize inputs
std::vector<float> x(d);
float x_sqlen = 0;
for (size_t i = 0; i < x.size(); i++) {
x[i] = uniform(rng);
x_sqlen += x[i] * x[i];
}
std::vector<float> y(d * ny);
std::vector<float> y_sqlens(ny, 0);
for (size_t i = 0; i < ny; i++) {
for (size_t j = 0; j < y.size(); j++) {
y[j] = uniform(rng);
y_sqlens[i] += y[j] * y[j];
}
}
// get distances
std::vector<float> distances(ny, 0);
for (size_t i = 0; i < ny; i++) {
float dp = 0;
for (size_t j = 0; j < d; j++) {
dp += x[j] * y[i + j * ny];
}
distances[i] = x_sqlen + y_sqlens[i] - 2 * dp;
}
// find nearest
size_t true_nearest_idx = 0;
float min_dis = HUGE_VALF;
for (size_t i = 0; i < ny; i++) {
if (distances[i] < min_dis) {
min_dis = distances[i];
true_nearest_idx = i;
}
}
std::vector<float> buffer(ny);
size_t nearest_idx = faiss::fvec_L2sqr_ny_nearest_y_transposed(
buffer.data(),
x.data(),
y.data(),
y_sqlens.data(),
d,
ny, // no need for special offset to test all lines of code
ny);
ASSERT_EQ(nearest_idx, true_nearest_idx)
<< "Mismatching fvec_L2sqr_ny_nearest_y_transposed results for d = "
<< d;
}
}
TEST(TestFvecL1, manhattan_distance) {
// ints instead of floats for 100% accuracy
std::default_random_engine rng(123);
std::uniform_int_distribution<int32_t> uniform(0, 32);
// modulo 8 results - 16 is to repeat the while loop in the function
for (const auto nrows : {8, 9, 10, 11, 12, 13, 14, 15, 16}) {
std::vector<float> x(nrows);
std::vector<float> y(nrows);
float true_distance = 0;
for (size_t i = 0; i < x.size(); i++) {
x[i] = uniform(rng);
y[i] = uniform(rng);
true_distance += std::abs(x[i] - y[i]);
}
auto distance = faiss::fvec_L1(x.data(), y.data(), x.size());
ASSERT_EQ(distance, true_distance)
<< "Mismatching fvec_Linf results for nrows = " << nrows;
}
}
TEST(TestFvecLinf, chebyshev_distance) {
// ints instead of floats for 100% accuracy
std::default_random_engine rng(123);
std::uniform_int_distribution<int32_t> uniform(0, 32);
// modulo 8 results - 16 is to repeat the while loop in the function
for (const auto nrows : {8, 9, 10, 11, 12, 13, 14, 15, 16}) {
std::vector<float> x(nrows);
std::vector<float> y(nrows);
float true_distance = 0;
for (size_t i = 0; i < x.size(); i++) {
x[i] = uniform(rng);
y[i] = uniform(rng);
true_distance = std::max(true_distance, std::abs(x[i] - y[i]));
}
auto distance = faiss::fvec_Linf(x.data(), y.data(), x.size());
ASSERT_EQ(distance, true_distance)
<< "Mismatching fvec_Linf results for nrows = " << nrows;
}
}
TEST(TestFvecMadd, multiple_add) {
// ints instead of floats for 100% accuracy
std::default_random_engine rng(123);
std::uniform_int_distribution<int32_t> uniform(0, 32);
// modulo 8 results - 16 is to repeat the while loop in the function
for (const auto nrows : {8, 9, 10, 11, 12, 13, 14, 15, 16}) {
std::vector<float> a(nrows);
std::vector<float> b(nrows);
const float bf = uniform(rng);
std::vector<float> true_distances(nrows);
for (size_t i = 0; i < a.size(); i++) {
a[i] = uniform(rng);
b[i] = uniform(rng);
true_distances[i] = a[i] + bf * b[i];
}
std::vector<float> distances(nrows);
faiss::fvec_madd(a.size(), a.data(), bf, b.data(), distances.data());
ASSERT_EQ(distances, true_distances)
<< "Mismatching fvec_madd results for nrows = " << nrows;
}
}
TEST(TestFvecAdd, add_array) {
// ints instead of floats for 100% accuracy
std::default_random_engine rng(123);
std::uniform_int_distribution<int32_t> uniform(0, 32);
for (const auto nrows : {1, 2, 5, 10, 15, 20, 25}) {
std::vector<float> a(nrows);
std::vector<float> b(nrows);
std::vector<float> true_distances(nrows);
for (size_t i = 0; i < a.size(); i++) {
a[i] = uniform(rng);
b[i] = uniform(rng);
true_distances[i] = a[i] + b[i];
}
std::vector<float> distances(nrows);
faiss::fvec_add(a.size(), a.data(), b.data(), distances.data());
ASSERT_EQ(distances, true_distances)
<< "Mismatching array-array fvec_add results for nrows = "
<< nrows;
}
}
TEST(TestFvecAdd, add_value) {
// ints instead of floats for 100% accuracy
std::default_random_engine rng(123);
std::uniform_int_distribution<int32_t> uniform(0, 32);
for (const auto nrows : {1, 2, 5, 10, 15, 20, 25}) {
std::vector<float> a(nrows);
const float b = uniform(rng); // value to add
std::vector<float> true_distances(nrows);
for (size_t i = 0; i < a.size(); i++) {
a[i] = uniform(rng);
true_distances[i] = a[i] + b;
}
std::vector<float> distances(nrows);
faiss::fvec_add(a.size(), a.data(), b, distances.data());
ASSERT_EQ(distances, true_distances)
<< "Mismatching array-value fvec_add results for nrows = "
<< nrows;
}
}
|