File: test_hnsw.cpp

package info (click to toggle)
faiss 1.12.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 8,572 kB
  • sloc: cpp: 85,627; python: 27,889; sh: 905; ansic: 425; makefile: 41
file content (662 lines) | stat: -rw-r--r-- 20,188 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
/*
 * Copyright (c) Meta Platforms, Inc. and affiliates.
 *
 * This source code is licensed under the MIT license found in the
 * LICENSE file in the root directory of this source tree.
 */

#include <gtest/gtest.h>

#include <cstddef>
#include <limits>
#include <random>
#include <unordered_set>
#include <vector>

#include <faiss/IndexHNSW.h>
#include <faiss/impl/HNSW.h>
#include <faiss/impl/ResultHandler.h>
#include <faiss/utils/random.h>

int reference_pop_min(faiss::HNSW::MinimaxHeap& heap, float* vmin_out) {
    assert(heap.k > 0);
    // returns min. This is an O(n) operation
    int i = heap.k - 1;
    while (i >= 0) {
        if (heap.ids[i] != -1) {
            break;
        }
        i--;
    }
    if (i == -1) {
        return -1;
    }
    int imin = i;
    float vmin = heap.dis[i];
    i--;
    while (i >= 0) {
        if (heap.ids[i] != -1 && heap.dis[i] < vmin) {
            vmin = heap.dis[i];
            imin = i;
        }
        i--;
    }
    if (vmin_out) {
        *vmin_out = vmin;
    }
    int ret = heap.ids[imin];
    heap.ids[imin] = -1;
    --heap.nvalid;

    return ret;
}

void test_popmin(int heap_size, int amount_to_put) {
    // create a heap
    faiss::HNSW::MinimaxHeap mm_heap(heap_size);

    using storage_idx_t = faiss::HNSW::storage_idx_t;

    std::default_random_engine rng(123 + heap_size * amount_to_put);
    std::uniform_int_distribution<storage_idx_t> u(0, 65536);
    std::uniform_real_distribution<float> uf(0, 1);

    // generate random unique indices
    std::unordered_set<storage_idx_t> indices;
    while (indices.size() < amount_to_put) {
        const storage_idx_t index = u(rng);
        indices.insert(index);
    }

    // put ones into the heap
    for (const auto index : indices) {
        float distance = uf(rng);
        if (distance >= 0.7f) {
            // add infinity values from time to time
            distance = std::numeric_limits<float>::infinity();
        }
        mm_heap.push(index, distance);
    }

    // clone the heap
    faiss::HNSW::MinimaxHeap cloned_mm_heap = mm_heap;

    // takes ones out one by one
    while (mm_heap.size() > 0) {
        // compare heaps
        ASSERT_EQ(mm_heap.n, cloned_mm_heap.n);
        ASSERT_EQ(mm_heap.k, cloned_mm_heap.k);
        ASSERT_EQ(mm_heap.nvalid, cloned_mm_heap.nvalid);
        ASSERT_EQ(mm_heap.ids, cloned_mm_heap.ids);
        ASSERT_EQ(mm_heap.dis, cloned_mm_heap.dis);

        // use the reference pop_min for the cloned heap
        float cloned_vmin_dis = std::numeric_limits<float>::quiet_NaN();
        storage_idx_t cloned_vmin_idx =
                reference_pop_min(cloned_mm_heap, &cloned_vmin_dis);

        float vmin_dis = std::numeric_limits<float>::quiet_NaN();
        storage_idx_t vmin_idx = mm_heap.pop_min(&vmin_dis);

        // compare returns
        ASSERT_EQ(vmin_dis, cloned_vmin_dis);
        ASSERT_EQ(vmin_idx, cloned_vmin_idx);
    }

    // compare heaps again
    ASSERT_EQ(mm_heap.n, cloned_mm_heap.n);
    ASSERT_EQ(mm_heap.k, cloned_mm_heap.k);
    ASSERT_EQ(mm_heap.nvalid, cloned_mm_heap.nvalid);
    ASSERT_EQ(mm_heap.ids, cloned_mm_heap.ids);
    ASSERT_EQ(mm_heap.dis, cloned_mm_heap.dis);
}

void test_popmin_identical_distances(
        int heap_size,
        int amount_to_put,
        const float distance) {
    // create a heap
    faiss::HNSW::MinimaxHeap mm_heap(heap_size);

    using storage_idx_t = faiss::HNSW::storage_idx_t;

    std::default_random_engine rng(123 + heap_size * amount_to_put);
    std::uniform_int_distribution<storage_idx_t> u(0, 65536);

    // generate random unique indices
    std::unordered_set<storage_idx_t> indices;
    while (indices.size() < amount_to_put) {
        const storage_idx_t index = u(rng);
        indices.insert(index);
    }

    // put ones into the heap
    for (const auto index : indices) {
        mm_heap.push(index, distance);
    }

    // clone the heap
    faiss::HNSW::MinimaxHeap cloned_mm_heap = mm_heap;

    // takes ones out one by one
    while (mm_heap.size() > 0) {
        // compare heaps
        ASSERT_EQ(mm_heap.n, cloned_mm_heap.n);
        ASSERT_EQ(mm_heap.k, cloned_mm_heap.k);
        ASSERT_EQ(mm_heap.nvalid, cloned_mm_heap.nvalid);
        ASSERT_EQ(mm_heap.ids, cloned_mm_heap.ids);
        ASSERT_EQ(mm_heap.dis, cloned_mm_heap.dis);

        // use the reference pop_min for the cloned heap
        float cloned_vmin_dis = std::numeric_limits<float>::quiet_NaN();
        storage_idx_t cloned_vmin_idx =
                reference_pop_min(cloned_mm_heap, &cloned_vmin_dis);

        float vmin_dis = std::numeric_limits<float>::quiet_NaN();
        storage_idx_t vmin_idx = mm_heap.pop_min(&vmin_dis);

        // compare returns
        ASSERT_EQ(vmin_dis, cloned_vmin_dis);
        ASSERT_EQ(vmin_idx, cloned_vmin_idx);
    }

    // compare heaps again
    ASSERT_EQ(mm_heap.n, cloned_mm_heap.n);
    ASSERT_EQ(mm_heap.k, cloned_mm_heap.k);
    ASSERT_EQ(mm_heap.nvalid, cloned_mm_heap.nvalid);
    ASSERT_EQ(mm_heap.ids, cloned_mm_heap.ids);
    ASSERT_EQ(mm_heap.dis, cloned_mm_heap.dis);
}

TEST(HNSW, Test_popmin) {
    std::vector<size_t> sizes = {1, 2, 3, 4, 5, 7, 9, 11, 16, 27, 32, 64, 128};
    for (const size_t size : sizes) {
        for (size_t amount = size; amount > 0; amount /= 2) {
            test_popmin(size, amount);
        }
    }
}

TEST(HNSW, Test_popmin_identical_distances) {
    std::vector<size_t> sizes = {1, 2, 3, 4, 5, 7, 9, 11, 16, 27, 32};
    for (const size_t size : sizes) {
        for (size_t amount = size; amount > 0; amount /= 2) {
            test_popmin_identical_distances(size, amount, 1.0f);
        }
    }
}

TEST(HNSW, Test_popmin_infinite_distances) {
    std::vector<size_t> sizes = {1, 2, 3, 4, 5, 7, 9, 11, 16, 27, 32};
    for (const size_t size : sizes) {
        for (size_t amount = size; amount > 0; amount /= 2) {
            test_popmin_identical_distances(
                    size, amount, std::numeric_limits<float>::infinity());
        }
    }
}

TEST(HNSW, Test_IndexHNSW_METRIC_Lp) {
    // Create an HNSW index with METRIC_Lp and metric_arg = 3
    faiss::IndexFlat storage_index(1, faiss::METRIC_Lp);
    storage_index.metric_arg = 3;
    faiss::IndexHNSW index(&storage_index, 32);

    // Add a single data point
    float data[1] = {0.0};
    index.add(1, data);

    // Prepare a query
    float query[1] = {2.0};
    float distance;
    faiss::idx_t label;

    index.search(1, query, 1, &distance, &label);

    EXPECT_NEAR(distance, 8.0, 1e-5); // Distance should be 8.0 (2^3)
    EXPECT_EQ(label, 0);              // Label should be 0
}

class HNSWTest : public testing::Test {
   protected:
    HNSWTest() {
        xb = std::make_unique<std::vector<float>>(d * nb);
        xb->reserve(d * nb);
        faiss::float_rand(xb->data(), d * nb, 12345);
        index = std::make_unique<faiss::IndexHNSWFlat>(d, M);
        index->add(nb, xb->data());
        xq = std::unique_ptr<std::vector<float>>(
                new std::vector<float>(d * nq));
        xq->reserve(d * nq);
        faiss::float_rand(xq->data(), d * nq, 12345);
        dis = std::unique_ptr<faiss::DistanceComputer>(
                index->storage->get_distance_computer());
        dis->set_query(xq->data() + 0 * index->d);
    }

    const int d = 64;
    const int nb = 2000;
    const int M = 4;
    const int nq = 10;
    const int k = 10;
    std::unique_ptr<std::vector<float>> xb;
    std::unique_ptr<std::vector<float>> xq;
    std::unique_ptr<faiss::DistanceComputer> dis;
    std::unique_ptr<faiss::IndexHNSWFlat> index;
};

/** Do a BFS on the candidates list */
int reference_search_from_candidates(
        const faiss::HNSW& hnsw,
        faiss::DistanceComputer& qdis,
        faiss::ResultHandler<faiss::HNSW::C>& res,
        faiss::HNSW::MinimaxHeap& candidates,
        faiss::VisitedTable& vt,
        faiss::HNSWStats& stats,
        int level,
        int nres_in,
        const faiss::SearchParametersHNSW* params) {
    int nres = nres_in;
    int ndis = 0;

    // can be overridden by search params
    bool do_dis_check = params ? params->check_relative_distance
                               : hnsw.check_relative_distance;
    int efSearch = params ? params->efSearch : hnsw.efSearch;
    const faiss::IDSelector* sel = params ? params->sel : nullptr;

    faiss::HNSW::C::T threshold = res.threshold;
    for (int i = 0; i < candidates.size(); i++) {
        faiss::idx_t v1 = candidates.ids[i];
        float d = candidates.dis[i];
        FAISS_ASSERT(v1 >= 0);
        if (!sel || sel->is_member(v1)) {
            if (d < threshold) {
                if (res.add_result(d, v1)) {
                    threshold = res.threshold;
                }
            }
        }
        vt.set(v1);
    }

    int nstep = 0;

    while (candidates.size() > 0) {
        float d0 = 0;
        int v0 = candidates.pop_min(&d0);

        if (do_dis_check) {
            // tricky stopping condition: there are more that ef
            // distances that are processed already that are smaller
            // than d0

            int n_dis_below = candidates.count_below(d0);
            if (n_dis_below >= efSearch) {
                break;
            }
        }

        size_t begin, end;
        hnsw.neighbor_range(v0, level, &begin, &end);

        // a reference version
        for (size_t j = begin; j < end; j++) {
            int v1 = hnsw.neighbors[j];
            if (v1 < 0) {
                break;
            }
            if (vt.get(v1)) {
                continue;
            }
            vt.set(v1);
            ndis++;
            float d = qdis(v1);
            if (!sel || sel->is_member(v1)) {
                if (d < threshold) {
                    if (res.add_result(d, v1)) {
                        threshold = res.threshold;
                        nres += 1;
                    }
                }
            }

            candidates.push(v1, d);
        }

        nstep++;
        if (!do_dis_check && nstep > efSearch) {
            break;
        }
    }

    if (level == 0) {
        stats.n1++;
        if (candidates.size() == 0) {
            stats.n2++;
        }
        stats.ndis += ndis;
        stats.nhops += nstep;
    }

    return nres;
}

faiss::HNSWStats reference_greedy_update_nearest(
        const faiss::HNSW& hnsw,
        faiss::DistanceComputer& qdis,
        int level,
        faiss::HNSW::storage_idx_t& nearest,
        float& d_nearest) {
    faiss::HNSWStats stats;

    for (;;) {
        faiss::HNSW::storage_idx_t prev_nearest = nearest;

        size_t begin, end;
        hnsw.neighbor_range(nearest, level, &begin, &end);

        size_t ndis = 0;

        for (size_t i = begin; i < end; i++) {
            faiss::HNSW::storage_idx_t v = hnsw.neighbors[i];
            if (v < 0) {
                break;
            }
            ndis += 1;
            float dis = qdis(v);
            if (dis < d_nearest) {
                nearest = v;
                d_nearest = dis;
            }
        }
        // update stats
        stats.ndis += ndis;
        stats.nhops += 1;

        if (nearest == prev_nearest) {
            return stats;
        }
    }
}

std::priority_queue<faiss::HNSW::Node> reference_search_from_candidate_unbounded(
        const faiss::HNSW& hnsw,
        const faiss::HNSW::Node& node,
        faiss::DistanceComputer& qdis,
        int ef,
        faiss::VisitedTable* vt,
        faiss::HNSWStats& stats) {
    int ndis = 0;
    std::priority_queue<faiss::HNSW::Node> top_candidates;
    std::priority_queue<
            faiss::HNSW::Node,
            std::vector<faiss::HNSW::Node>,
            std::greater<faiss::HNSW::Node>>
            candidates;

    top_candidates.push(node);
    candidates.push(node);

    vt->set(node.second);

    while (!candidates.empty()) {
        float d0;
        faiss::HNSW::storage_idx_t v0;
        std::tie(d0, v0) = candidates.top();

        if (d0 > top_candidates.top().first) {
            break;
        }

        candidates.pop();

        size_t begin, end;
        hnsw.neighbor_range(v0, 0, &begin, &end);

        for (size_t j = begin; j < end; ++j) {
            int v1 = hnsw.neighbors[j];

            if (v1 < 0) {
                break;
            }
            if (vt->get(v1)) {
                continue;
            }

            vt->set(v1);

            float d1 = qdis(v1);
            ++ndis;

            if (top_candidates.top().first > d1 || top_candidates.size() < ef) {
                candidates.emplace(d1, v1);
                top_candidates.emplace(d1, v1);

                if (top_candidates.size() > ef) {
                    top_candidates.pop();
                }
            }
        }

        stats.nhops += 1;
    }

    ++stats.n1;
    if (candidates.size() == 0) {
        ++stats.n2;
    }
    stats.ndis += ndis;

    return top_candidates;
}

TEST_F(HNSWTest, TEST_search_from_candidate_unbounded) {
    omp_set_num_threads(1);
    auto nearest = index->hnsw.entry_point;
    float d_nearest = (*dis)(nearest);
    auto node = faiss::HNSW::Node(d_nearest, nearest);
    faiss::VisitedTable vt(index->ntotal);
    faiss::HNSWStats stats;

    // actual version
    auto top_candidates = faiss::search_from_candidate_unbounded(
            index->hnsw, node, *dis, k, &vt, stats);

    auto reference_nearest = index->hnsw.entry_point;
    float reference_d_nearest = (*dis)(nearest);
    auto reference_node =
            faiss::HNSW::Node(reference_d_nearest, reference_nearest);
    faiss::VisitedTable reference_vt(index->ntotal);
    faiss::HNSWStats reference_stats;

    // reference version
    auto reference_top_candidates = reference_search_from_candidate_unbounded(
            index->hnsw,
            reference_node,
            *dis,
            k,
            &reference_vt,
            reference_stats);
    EXPECT_EQ(stats.ndis, reference_stats.ndis);
    EXPECT_EQ(stats.nhops, reference_stats.nhops);
    EXPECT_EQ(stats.n1, reference_stats.n1);
    EXPECT_EQ(stats.n2, reference_stats.n2);
    EXPECT_EQ(top_candidates.size(), reference_top_candidates.size());
}

TEST_F(HNSWTest, TEST_greedy_update_nearest) {
    omp_set_num_threads(1);

    auto nearest = index->hnsw.entry_point;
    float d_nearest = (*dis)(nearest);
    auto reference_nearest = index->hnsw.entry_point;
    float reference_d_nearest = (*dis)(reference_nearest);

    // actual version
    auto stats = faiss::greedy_update_nearest(
            index->hnsw, *dis, 0, nearest, d_nearest);

    // reference version
    auto reference_stats = reference_greedy_update_nearest(
            index->hnsw, *dis, 0, reference_nearest, reference_d_nearest);
    EXPECT_EQ(stats.ndis, reference_stats.ndis);
    EXPECT_EQ(stats.nhops, reference_stats.nhops);
    EXPECT_EQ(stats.n1, reference_stats.n1);
    EXPECT_EQ(stats.n2, reference_stats.n2);
    EXPECT_NEAR(d_nearest, reference_d_nearest, 0.01);
    EXPECT_EQ(nearest, reference_nearest);
}

TEST_F(HNSWTest, TEST_search_from_candidates) {
    omp_set_num_threads(1);

    std::vector<faiss::idx_t> I(k * nq);
    std::vector<float> D(k * nq);
    std::vector<faiss::idx_t> reference_I(k * nq);
    std::vector<float> reference_D(k * nq);
    using RH = faiss::HeapBlockResultHandler<faiss::HNSW::C>;

    faiss::VisitedTable vt(index->ntotal);
    faiss::VisitedTable reference_vt(index->ntotal);
    int num_candidates = 10;
    faiss::HNSW::MinimaxHeap candidates(num_candidates);
    faiss::HNSW::MinimaxHeap reference_candidates(num_candidates);

    for (int i = 0; i < num_candidates; i++) {
        vt.set(i);
        reference_vt.set(i);
        candidates.push(i, (*dis)(i));
        reference_candidates.push(i, (*dis)(i));
    }

    faiss::HNSWStats stats;
    RH bres(nq, D.data(), I.data(), k);
    faiss::HeapBlockResultHandler<faiss::HNSW::C>::SingleResultHandler res(
            bres);

    res.begin(0);
    faiss::search_from_candidates(
            index->hnsw, *dis, res, candidates, vt, stats, 0, 0, nullptr);
    res.end();

    faiss::HNSWStats reference_stats;
    RH reference_bres(nq, reference_D.data(), reference_I.data(), k);
    faiss::HeapBlockResultHandler<faiss::HNSW::C>::SingleResultHandler
            reference_res(reference_bres);
    reference_res.begin(0);
    reference_search_from_candidates(
            index->hnsw,
            *dis,
            reference_res,
            reference_candidates,
            reference_vt,
            reference_stats,
            0,
            0,
            nullptr);
    reference_res.end();
    for (int i = 0; i < nq; i++) {
        for (int j = 0; j < k; j++) {
            EXPECT_NEAR(I[i * k + j], reference_I[i * k + j], 0.1);
            EXPECT_NEAR(D[i * k + j], reference_D[i * k + j], 0.1);
        }
    }
    EXPECT_EQ(reference_stats.ndis, stats.ndis);
    EXPECT_EQ(reference_stats.nhops, stats.nhops);
    EXPECT_EQ(reference_stats.n1, stats.n1);
    EXPECT_EQ(reference_stats.n2, stats.n2);
}

TEST_F(HNSWTest, TEST_search_neighbors_to_add) {
    omp_set_num_threads(1);

    faiss::VisitedTable vt(index->ntotal);
    faiss::VisitedTable reference_vt(index->ntotal);

    std::priority_queue<faiss::HNSW::NodeDistCloser> link_targets;
    std::priority_queue<faiss::HNSW::NodeDistCloser> reference_link_targets;

    faiss::search_neighbors_to_add(
            index->hnsw,
            *dis,
            link_targets,
            index->hnsw.entry_point,
            (*dis)(index->hnsw.entry_point),
            index->hnsw.max_level,
            vt,
            false);

    faiss::search_neighbors_to_add(
            index->hnsw,
            *dis,
            reference_link_targets,
            index->hnsw.entry_point,
            (*dis)(index->hnsw.entry_point),
            index->hnsw.max_level,
            reference_vt,
            true);

    EXPECT_EQ(link_targets.size(), reference_link_targets.size());
    while (!link_targets.empty()) {
        auto val = link_targets.top();
        auto reference_val = reference_link_targets.top();
        EXPECT_EQ(val.d, reference_val.d);
        EXPECT_EQ(val.id, reference_val.id);
        link_targets.pop();
        reference_link_targets.pop();
    }
}

TEST_F(HNSWTest, TEST_nb_neighbors_bound) {
    omp_set_num_threads(1);
    EXPECT_EQ(index->hnsw.nb_neighbors(0), 8);
    EXPECT_EQ(index->hnsw.nb_neighbors(1), 4);
    EXPECT_EQ(index->hnsw.nb_neighbors(2), 4);
    EXPECT_EQ(index->hnsw.nb_neighbors(3), 4);
    // picking a large number to trigger an exception based on checking bounds
    EXPECT_THROW(index->hnsw.nb_neighbors(100), faiss::FaissException);
}

TEST_F(HNSWTest, TEST_search_level_0) {
    omp_set_num_threads(1);
    std::vector<faiss::idx_t> I(k * nq);
    std::vector<float> D(k * nq);

    using RH = faiss::HeapBlockResultHandler<faiss::HNSW::C>;
    RH bres1(nq, D.data(), I.data(), k);
    faiss::HeapBlockResultHandler<faiss::HNSW::C>::SingleResultHandler res1(
            bres1);
    RH bres2(nq, D.data(), I.data(), k);
    faiss::HeapBlockResultHandler<faiss::HNSW::C>::SingleResultHandler res2(
            bres2);

    faiss::HNSWStats stats1, stats2;
    faiss::VisitedTable vt1(index->ntotal);
    faiss::VisitedTable vt2(index->ntotal);
    auto nprobe = 5;
    const faiss::HNSW::storage_idx_t values[] = {1, 2, 3, 4, 5};
    const faiss::HNSW::storage_idx_t* nearest_i = values;
    const float distances[] = {0.1, 0.2, 0.3, 0.4, 0.5};
    const float* nearest_d = distances;

    // search_type == 1
    res1.begin(0);
    index->hnsw.search_level_0(
            *dis, res1, nprobe, nearest_i, nearest_d, 1, stats1, vt1, nullptr);
    res1.end();

    // search_type == 2
    res2.begin(0);
    index->hnsw.search_level_0(
            *dis, res2, nprobe, nearest_i, nearest_d, 2, stats2, vt2, nullptr);
    res2.end();

    // search_type 1 calls search_from_candidates in a loop nprobe times.
    // search_type 2 pushes the candidates and just calls search_from_candidates
    // once, so those stats will be much less.
    EXPECT_GT(stats1.ndis, stats2.ndis);
    EXPECT_GT(stats1.nhops, stats2.nhops);
    EXPECT_GT(stats1.n1, stats2.n1);
    EXPECT_GT(stats1.n2, stats2.n2);
}