1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import absolute_import, division, print_function
import numpy as np
import unittest
import faiss
def make_binary_dataset(d, nb, nt, nq):
assert d % 8 == 0
rs = np.random.RandomState(123)
x = rs.randint(256, size=(nb + nq + nt, int(d / 8))).astype('uint8')
return x[:nt], x[nt:-nq], x[-nq:]
def binary_to_float(x):
n, d = x.shape
x8 = x.reshape(n * d, -1)
c8 = 2 * ((x8 >> np.arange(8)) & 1).astype('int8') - 1
return c8.astype('float32').reshape(n, d * 8)
class TestIndexBinaryFromFloat(unittest.TestCase):
"""Use a binary index backed by a float index"""
def test_index_from_float(self):
d = 256
nt = 0
nb = 1500
nq = 500
(xt, xb, xq) = make_binary_dataset(d, nb, nt, nq)
index_ref = faiss.IndexFlatL2(d)
index_ref.add(binary_to_float(xb))
index = faiss.IndexFlatL2(d)
index_bin = faiss.IndexBinaryFromFloat(index)
index_bin.add(xb)
D_ref, I_ref = index_ref.search(binary_to_float(xq), 10)
D, I = index_bin.search(xq, 10)
np.testing.assert_allclose((D_ref / 4.0).astype('int32'), D)
def test_wrapped_quantizer(self):
d = 256
nt = 150
nb = 1500
nq = 500
(xt, xb, xq) = make_binary_dataset(d, nb, nt, nq)
nlist = 16
quantizer_ref = faiss.IndexBinaryFlat(d)
index_ref = faiss.IndexBinaryIVF(quantizer_ref, d, nlist)
index_ref.train(xt)
index_ref.add(xb)
unwrapped_quantizer = faiss.IndexFlatL2(d)
quantizer = faiss.IndexBinaryFromFloat(unwrapped_quantizer)
index = faiss.IndexBinaryIVF(quantizer, d, nlist)
index.train(xt)
index.add(xb)
D_ref, I_ref = index_ref.search(xq, 10)
D, I = index.search(xq, 10)
np.testing.assert_array_equal(D_ref, D)
def test_wrapped_quantizer_IMI(self):
d = 256
nt = 3500
nb = 10000
nq = 500
(xt, xb, xq) = make_binary_dataset(d, nb, nt, nq)
index_ref = faiss.IndexBinaryFlat(d)
index_ref.add(xb)
nlist_exp = 6
nlist = 2 ** (2 * nlist_exp)
float_quantizer = faiss.MultiIndexQuantizer(d, 2, nlist_exp)
wrapped_quantizer = faiss.IndexBinaryFromFloat(float_quantizer)
wrapped_quantizer.train(xt)
assert nlist == float_quantizer.ntotal
index = faiss.IndexBinaryIVF(wrapped_quantizer, d,
float_quantizer.ntotal)
index.nprobe = 2048
assert index.is_trained
index.add(xb)
D_ref, I_ref = index_ref.search(xq, 10)
D, I = index.search(xq, 10)
recall = sum(gti[0] in Di[:10] for gti, Di in zip(D_ref, D)) \
/ float(D_ref.shape[0])
assert recall > 0.82, "recall = %g" % recall
def test_wrapped_quantizer_HNSW(self):
def bin2float2d(v):
n, d = v.shape
vf = ((v.reshape(-1, 1) >> np.arange(8)) & 1).astype("float32")
vf *= 2
vf -= 1
return vf.reshape(n, d * 8)
d = 256
nt = 12800
nb = 10000
nq = 500
(xt, xb, xq) = make_binary_dataset(d, nb, nt, nq)
index_ref = faiss.IndexBinaryFlat(d)
index_ref.add(xb)
nlist = 256
clus = faiss.Clustering(d, nlist)
clus_index = faiss.IndexFlatL2(d)
xt_f = bin2float2d(xt)
clus.train(xt_f, clus_index)
centroids = faiss.vector_to_array(clus.centroids).reshape(-1, clus.d)
hnsw_quantizer = faiss.IndexHNSWFlat(d, 32)
hnsw_quantizer.add(centroids)
hnsw_quantizer.is_trained = True
wrapped_quantizer = faiss.IndexBinaryFromFloat(hnsw_quantizer)
assert nlist == hnsw_quantizer.ntotal
assert nlist == wrapped_quantizer.ntotal
assert wrapped_quantizer.is_trained
index = faiss.IndexBinaryIVF(wrapped_quantizer, d,
hnsw_quantizer.ntotal)
index.nprobe = 128
assert index.is_trained
index.add(xb)
D_ref, I_ref = index_ref.search(xq, 10)
D, I = index.search(xq, 10)
recall = sum(gti[0] in Di[:10] for gti, Di in zip(D_ref, D)) \
/ float(D_ref.shape[0])
assert recall >= 0.77, "recall = %g" % recall
class TestOverrideKmeansQuantizer(unittest.TestCase):
def test_override(self):
d = 256
nt = 3500
nb = 10000
nq = 500
(xt, xb, xq) = make_binary_dataset(d, nb, nt, nq)
def train_and_get_centroids(override_kmeans_index):
index = faiss.index_binary_factory(d, "BIVF10")
index.verbose = True
if override_kmeans_index is not None:
index.clustering_index = override_kmeans_index
index.train(xt)
centroids = faiss.downcast_IndexBinary(index.quantizer).xb
return faiss.vector_to_array(centroids).reshape(-1, d // 8)
centroids_ref = train_and_get_centroids(None)
# should do the exact same thing
centroids_new = train_and_get_centroids(faiss.IndexFlatL2(d))
assert np.all(centroids_ref == centroids_new)
# will do less accurate assignment... Sanity check that the
# index is indeed used by kmeans
centroids_new = train_and_get_centroids(faiss.IndexLSH(d, 16))
assert not np.all(centroids_ref == centroids_new)
|