File: test_index_binary_from_float.py

package info (click to toggle)
faiss 1.12.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 8,572 kB
  • sloc: cpp: 85,627; python: 27,889; sh: 905; ansic: 425; makefile: 41
file content (195 lines) | stat: -rw-r--r-- 5,663 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

from __future__ import absolute_import, division, print_function

import numpy as np
import unittest
import faiss


def make_binary_dataset(d, nb, nt, nq):
    assert d % 8 == 0
    rs = np.random.RandomState(123)
    x = rs.randint(256, size=(nb + nq + nt, int(d / 8))).astype('uint8')
    return x[:nt], x[nt:-nq], x[-nq:]


def binary_to_float(x):
    n, d = x.shape
    x8 = x.reshape(n * d, -1)
    c8 = 2 * ((x8 >> np.arange(8)) & 1).astype('int8') - 1
    return c8.astype('float32').reshape(n, d * 8)


class TestIndexBinaryFromFloat(unittest.TestCase):
    """Use a binary index backed by a float index"""

    def test_index_from_float(self):
        d = 256
        nt = 0
        nb = 1500
        nq = 500
        (xt, xb, xq) = make_binary_dataset(d, nb, nt, nq)

        index_ref = faiss.IndexFlatL2(d)
        index_ref.add(binary_to_float(xb))

        index = faiss.IndexFlatL2(d)
        index_bin = faiss.IndexBinaryFromFloat(index)
        index_bin.add(xb)

        D_ref, I_ref = index_ref.search(binary_to_float(xq), 10)
        D, I = index_bin.search(xq, 10)

        np.testing.assert_allclose((D_ref / 4.0).astype('int32'), D)

    def test_wrapped_quantizer(self):
        d = 256
        nt = 150
        nb = 1500
        nq = 500
        (xt, xb, xq) = make_binary_dataset(d, nb, nt, nq)

        nlist = 16
        quantizer_ref = faiss.IndexBinaryFlat(d)
        index_ref = faiss.IndexBinaryIVF(quantizer_ref, d, nlist)
        index_ref.train(xt)

        index_ref.add(xb)

        unwrapped_quantizer = faiss.IndexFlatL2(d)
        quantizer = faiss.IndexBinaryFromFloat(unwrapped_quantizer)
        index = faiss.IndexBinaryIVF(quantizer, d, nlist)

        index.train(xt)

        index.add(xb)

        D_ref, I_ref = index_ref.search(xq, 10)
        D, I = index.search(xq, 10)

        np.testing.assert_array_equal(D_ref, D)

    def test_wrapped_quantizer_IMI(self):
        d = 256
        nt = 3500
        nb = 10000
        nq = 500
        (xt, xb, xq) = make_binary_dataset(d, nb, nt, nq)

        index_ref = faiss.IndexBinaryFlat(d)

        index_ref.add(xb)

        nlist_exp = 6
        nlist = 2 ** (2 * nlist_exp)
        float_quantizer = faiss.MultiIndexQuantizer(d, 2, nlist_exp)
        wrapped_quantizer = faiss.IndexBinaryFromFloat(float_quantizer)
        wrapped_quantizer.train(xt)

        assert nlist == float_quantizer.ntotal

        index = faiss.IndexBinaryIVF(wrapped_quantizer, d,
                                     float_quantizer.ntotal)
        index.nprobe = 2048
        assert index.is_trained

        index.add(xb)

        D_ref, I_ref = index_ref.search(xq, 10)
        D, I = index.search(xq, 10)

        recall = sum(gti[0] in Di[:10] for gti, Di in zip(D_ref, D)) \
                 / float(D_ref.shape[0])

        assert recall > 0.82, "recall = %g" % recall

    def test_wrapped_quantizer_HNSW(self):

        def bin2float2d(v):
            n, d = v.shape
            vf = ((v.reshape(-1, 1) >> np.arange(8)) & 1).astype("float32")
            vf *= 2
            vf -= 1
            return vf.reshape(n, d * 8)

        d = 256
        nt = 12800
        nb = 10000
        nq = 500
        (xt, xb, xq) = make_binary_dataset(d, nb, nt, nq)

        index_ref = faiss.IndexBinaryFlat(d)

        index_ref.add(xb)

        nlist = 256
        clus = faiss.Clustering(d, nlist)
        clus_index = faiss.IndexFlatL2(d)

        xt_f = bin2float2d(xt)
        clus.train(xt_f, clus_index)

        centroids = faiss.vector_to_array(clus.centroids).reshape(-1, clus.d)
        hnsw_quantizer = faiss.IndexHNSWFlat(d, 32)
        hnsw_quantizer.add(centroids)
        hnsw_quantizer.is_trained = True
        wrapped_quantizer = faiss.IndexBinaryFromFloat(hnsw_quantizer)

        assert nlist == hnsw_quantizer.ntotal
        assert nlist == wrapped_quantizer.ntotal
        assert wrapped_quantizer.is_trained

        index = faiss.IndexBinaryIVF(wrapped_quantizer, d,
                                     hnsw_quantizer.ntotal)
        index.nprobe = 128

        assert index.is_trained

        index.add(xb)

        D_ref, I_ref = index_ref.search(xq, 10)
        D, I = index.search(xq, 10)

        recall = sum(gti[0] in Di[:10] for gti, Di in zip(D_ref, D)) \
                 / float(D_ref.shape[0])

        assert recall >= 0.77, "recall = %g" % recall


class TestOverrideKmeansQuantizer(unittest.TestCase):

    def test_override(self):
        d = 256
        nt = 3500
        nb = 10000
        nq = 500
        (xt, xb, xq) = make_binary_dataset(d, nb, nt, nq)

        def train_and_get_centroids(override_kmeans_index):
            index = faiss.index_binary_factory(d, "BIVF10")
            index.verbose = True

            if override_kmeans_index is not None:
                index.clustering_index = override_kmeans_index

            index.train(xt)

            centroids = faiss.downcast_IndexBinary(index.quantizer).xb
            return faiss.vector_to_array(centroids).reshape(-1, d // 8)

        centroids_ref = train_and_get_centroids(None)

        # should do the exact same thing
        centroids_new = train_and_get_centroids(faiss.IndexFlatL2(d))

        assert np.all(centroids_ref == centroids_new)

        # will do less accurate assignment... Sanity check that the
        # index is indeed used by kmeans
        centroids_new = train_and_get_centroids(faiss.IndexLSH(d, 16))

        assert not np.all(centroids_ref == centroids_new)