1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <omp.h>
#include <algorithm>
#include <cstddef>
#include <map>
#include <random>
#include <set>
#include <gtest/gtest.h>
#include <faiss/IndexFlat.h>
#include <faiss/IndexIVFFlat.h>
#include <faiss/impl/FaissAssert.h>
namespace {
// stores all ivf lists, used to verify the context
// object is passed to the iterator
class TestContext {
public:
TestContext() {}
void save_code(size_t list_no, const uint8_t* code, size_t code_size) {
list_nos.emplace(id, list_no);
codes.emplace(id, std::vector<uint8_t>(code_size));
for (size_t i = 0; i < code_size; i++) {
codes[id][i] = code[i];
}
id++;
}
// id to codes map
std::unordered_map<faiss::idx_t, std::vector<uint8_t>> codes;
// id to list_no map
std::unordered_map<faiss::idx_t, size_t> list_nos;
faiss::idx_t id = 0;
std::set<size_t> lists_probed;
};
// the iterator that iterates over the codes stored in context object
class TestInvertedListIterator : public faiss::InvertedListsIterator {
public:
TestInvertedListIterator(size_t list_no, TestContext* context)
: list_no{list_no}, context{context} {
it = context->codes.cbegin();
seek_next();
}
~TestInvertedListIterator() override {}
// move the cursor to the first valid entry
void seek_next() {
while (it != context->codes.cend() &&
context->list_nos[it->first] != list_no) {
it++;
}
}
virtual bool is_available() const override {
return it != context->codes.cend();
}
virtual void next() override {
it++;
seek_next();
}
virtual std::pair<faiss::idx_t, const uint8_t*> get_id_and_codes()
override {
if (it == context->codes.cend()) {
FAISS_THROW_MSG("invalid state");
}
return std::make_pair(it->first, it->second.data());
}
private:
size_t list_no;
TestContext* context;
decltype(context->codes.cbegin()) it;
};
class TestInvertedLists : public faiss::InvertedLists {
public:
TestInvertedLists(size_t nlist, size_t code_size)
: faiss::InvertedLists(nlist, code_size) {
use_iterator = true;
}
~TestInvertedLists() override {}
size_t list_size(size_t /*list_no*/) const override {
FAISS_THROW_MSG("unexpected call");
}
faiss::InvertedListsIterator* get_iterator(size_t list_no, void* context)
const override {
auto testContext = (TestContext*)context;
testContext->lists_probed.insert(list_no);
return new TestInvertedListIterator(list_no, testContext);
}
const uint8_t* get_codes(size_t /* list_no */) const override {
FAISS_THROW_MSG("unexpected call");
}
const faiss::idx_t* get_ids(size_t /* list_no */) const override {
FAISS_THROW_MSG("unexpected call");
}
// store the codes in context object
size_t add_entry(
size_t list_no,
faiss::idx_t /*theid*/,
const uint8_t* code,
void* context) override {
auto testContext = (TestContext*)context;
testContext->save_code(list_no, code, code_size);
return 0;
}
size_t add_entries(
size_t /*list_no*/,
size_t /*n_entry*/,
const faiss::idx_t* /*ids*/,
const uint8_t* /*code*/) override {
FAISS_THROW_MSG("unexpected call");
}
void update_entries(
size_t /*list_no*/,
size_t /*offset*/,
size_t /*n_entry*/,
const faiss::idx_t* /*ids*/,
const uint8_t* /*code*/) override {
FAISS_THROW_MSG("unexpected call");
}
void resize(size_t /*list_no*/, size_t /*new_size*/) override {
FAISS_THROW_MSG("unexpected call");
}
};
} // namespace
TEST(IVF, list_context) {
// this test verifies that the context object is passed
// to the InvertedListsIterator and InvertedLists::add_entry.
// the test InvertedLists and InvertedListsIterator reads/writes
// to the test context object.
// the test verifies the context object is modified as expected.
constexpr int d = 32; // dimension
constexpr int nb = 100000; // database size
constexpr int nlist = 100;
std::mt19937 rng;
std::uniform_real_distribution<> distrib;
// disable parallism, or we need to make Context object
// thread-safe
omp_set_num_threads(1);
faiss::IndexFlatL2 quantizer(d); // the other index
faiss::IndexIVFFlat index(&quantizer, d, nlist);
TestInvertedLists inverted_lists(nlist, index.code_size);
index.replace_invlists(&inverted_lists);
{
// training
constexpr size_t nt = 1500; // nb of training vectors
std::vector<float> trainvecs(nt * d);
for (size_t i = 0; i < nt * d; i++) {
trainvecs[i] = distrib(rng);
}
index.verbose = true;
index.train(nt, trainvecs.data());
}
TestContext context;
std::vector<float> query_vector;
constexpr faiss::idx_t query_vector_id = 100;
{
// populating the database
std::vector<float> database(nb * d);
for (size_t i = 0; i < nb * d; i++) {
database[i] = distrib(rng);
// populate the query vector
if (i >= query_vector_id * d && i < query_vector_id * d + d) {
query_vector.push_back(database[i]);
}
}
std::vector<faiss::idx_t> coarse_idx(nb);
index.quantizer->assign(nb, database.data(), coarse_idx.data());
// pass dummy ids, the acutal ids are assigned in TextContext object
std::vector<faiss::idx_t> xids(nb, 42);
index.add_core(
nb, database.data(), xids.data(), coarse_idx.data(), &context);
// check the context object get updated
EXPECT_EQ(nb, context.id) << "should have added all ids";
EXPECT_EQ(nb, context.codes.size())
<< "should have correct number of codes";
EXPECT_EQ(nb, context.list_nos.size())
<< "should have correct number of list numbers";
}
{
constexpr size_t num_vecs = 5; // number of vectors
std::vector<float> vecs(num_vecs * d);
for (size_t i = 0; i < num_vecs * d; i++) {
vecs[i] = distrib(rng);
}
const size_t codeSize = index.sa_code_size();
std::vector<uint8_t> encodedData(num_vecs * codeSize);
index.sa_encode(num_vecs, vecs.data(), encodedData.data());
std::vector<float> decodedVecs(num_vecs * d);
index.sa_decode(num_vecs, encodedData.data(), decodedVecs.data());
EXPECT_EQ(vecs, decodedVecs)
<< "decoded vectors should be the same as the original vectors that were encoded";
}
{
constexpr faiss::idx_t k = 100;
constexpr size_t nprobe = 10;
std::vector<float> distances(k);
std::vector<faiss::idx_t> labels(k);
faiss::SearchParametersIVF params;
params.inverted_list_context = &context;
params.nprobe = nprobe;
index.search(
1,
query_vector.data(),
k,
distances.data(),
labels.data(),
¶ms);
EXPECT_EQ(nprobe, context.lists_probed.size())
<< "should probe nprobe lists";
// check the result contains the query vector, the probablity of
// this fail should be low
auto query_vector_listno = context.list_nos[query_vector_id];
auto& lists_probed = context.lists_probed;
EXPECT_TRUE(
std::find(
lists_probed.cbegin(),
lists_probed.cend(),
query_vector_listno) != lists_probed.cend())
<< "should probe the list of the query vector";
EXPECT_TRUE(
std::find(labels.cbegin(), labels.cend(), query_vector_id) !=
labels.cend())
<< "should return the query vector";
}
}
|