1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
|
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <cinttypes>
#include <cstdio>
#include <cstdlib>
#include <memory>
#include <random>
#include <thread>
#include <vector>
#include <gtest/gtest.h>
#include <faiss/AutoTune.h>
#include <faiss/IVFlib.h>
#include <faiss/IndexBinaryIVF.h>
#include <faiss/IndexIVF.h>
#include <faiss/IndexPreTransform.h>
#include <faiss/index_factory.h>
#include <faiss/utils/distances.h>
using namespace faiss;
namespace {
// dimension of the vectors to index
int d = 32;
// nb of training vectors
size_t nt = 5000;
// size of the database points per window step
size_t nb = 1000;
// nb of queries
size_t nq = 200;
int k = 10;
std::mt19937 rng;
std::vector<float> make_data(size_t n) {
std::vector<float> database(n * d);
std::uniform_real_distribution<> distrib;
for (size_t i = 0; i < n * d; i++) {
database[i] = distrib(rng);
}
return database;
}
std::unique_ptr<Index> make_trained_index(
const char* index_type,
MetricType metric_type) {
auto index =
std::unique_ptr<Index>(index_factory(d, index_type, metric_type));
auto xt = make_data(nt);
index->train(nt, xt.data());
ParameterSpace().set_index_parameter(index.get(), "nprobe", 4);
return index;
}
std::vector<idx_t> search_index(Index* index, const float* xq) {
std::vector<idx_t> I(k * nq);
std::vector<float> D(k * nq);
index->search(nq, xq, k, D.data(), I.data());
return I;
}
/*************************************************************
* Test functions for a given index type
*************************************************************/
void test_lowlevel_access(const char* index_key, MetricType metric) {
std::unique_ptr<Index> index = make_trained_index(index_key, metric);
auto xb = make_data(nb);
index->add(nb, xb.data());
/** handle the case if we have a preprocessor */
const IndexPreTransform* index_pt =
dynamic_cast<const IndexPreTransform*>(index.get());
int dt = index->d;
const float* xbt = xb.data();
std::unique_ptr<float[]> del_xbt;
if (index_pt) {
dt = index_pt->index->d;
xbt = index_pt->apply_chain(nb, xb.data());
if (xbt != xb.data()) {
del_xbt.reset((float*)xbt);
}
}
IndexIVF* index_ivf = ivflib::extract_index_ivf(index.get());
/** Test independent encoding
*
* Makes it possible to do additions on a custom inverted list
* implementation. From a set of vectors, computes the inverted
* list ids + the codes corresponding to each vector.
*/
std::vector<idx_t> list_nos(nb);
std::vector<uint8_t> codes(index_ivf->code_size * nb);
index_ivf->quantizer->assign(nb, xbt, list_nos.data());
index_ivf->encode_vectors(nb, xbt, list_nos.data(), codes.data());
/** Test independent decoding
*
* Encode and decode twice on each vector and compare the first time decoded
* vector and second time decoded vector (test decoding consistency only due
* to data loss during encode and decode).
*/
std::vector<float> decoded(nb * dt);
std::vector<uint8_t> codes2(codes);
std::vector<float> decoded2(nb * dt);
index_ivf->decode_vectors(
nb, codes.data(), list_nos.data(), decoded.data());
index_ivf->encode_vectors(nb, xbt, list_nos.data(), codes2.data());
index_ivf->decode_vectors(
nb, codes2.data(), list_nos.data(), decoded2.data());
EXPECT_LT(
faiss::fvec_L2sqr(decoded.data(), decoded2.data(), nb * dt), 1e-5);
// compare with normal IVF addition
const InvertedLists* il = index_ivf->invlists;
for (int list_no = 0; list_no < index_ivf->nlist; list_no++) {
InvertedLists::ScopedCodes ivf_codes(il, list_no);
InvertedLists::ScopedIds ivf_ids(il, list_no);
size_t list_size = il->list_size(list_no);
for (int i = 0; i < list_size; i++) {
const uint8_t* ref_code = ivf_codes.get() + i * il->code_size;
const uint8_t* new_code = codes.data() + ivf_ids[i] * il->code_size;
EXPECT_EQ(memcmp(ref_code, new_code, il->code_size), 0);
}
}
/** Test independent search
*
* Manually scans through inverted lists, computing distances and
* ordering results organized in a heap.
*/
// sample some example queries and get reference search results.
auto xq = make_data(nq);
auto ref_I = search_index(index.get(), xq.data());
// handle preprocessing
const float* xqt = xq.data();
std::unique_ptr<float[]> del_xqt;
if (index_pt) {
xqt = index_pt->apply_chain(nq, xq.data());
if (xqt != xq.data()) {
del_xqt.reset((float*)xqt);
}
}
// quantize the queries to get the inverted list ids to visit.
int nprobe = index_ivf->nprobe;
std::vector<idx_t> q_lists(nq * nprobe);
std::vector<float> q_dis(nq * nprobe);
index_ivf->quantizer->search(nq, xqt, nprobe, q_dis.data(), q_lists.data());
// object that does the scanning and distance computations.
std::unique_ptr<InvertedListScanner> scanner(
index_ivf->get_InvertedListScanner());
for (int i = 0; i < nq; i++) {
std::vector<idx_t> I(k, -1);
float default_dis = metric == METRIC_L2 ? HUGE_VAL : -HUGE_VAL;
std::vector<float> D(k, default_dis);
scanner->set_query(xqt + i * dt);
for (int j = 0; j < nprobe; j++) {
int list_no = q_lists[i * nprobe + j];
if (list_no < 0) {
continue;
}
scanner->set_list(list_no, q_dis[i * nprobe + j]);
// here we get the inverted lists from the InvertedLists
// object but they could come from anywhere
scanner->scan_codes(
il->list_size(list_no),
InvertedLists::ScopedCodes(il, list_no).get(),
InvertedLists::ScopedIds(il, list_no).get(),
D.data(),
I.data(),
k);
if (j == 0) {
// all results so far come from list_no, so let's check if
// the distance function works
for (int jj = 0; jj < k; jj++) {
int vno = I[jj];
if (vno < 0) {
break; // heap is not full yet
}
// we have the codes from the addition test
float computed_D = scanner->distance_to_code(
codes.data() + vno * il->code_size);
EXPECT_FLOAT_EQ(computed_D, D[jj]);
}
}
}
// re-order heap
if (metric == METRIC_L2) {
maxheap_reorder(k, D.data(), I.data());
} else {
minheap_reorder(k, D.data(), I.data());
}
// check that we have the same results as the reference search
for (int j = 0; j < k; j++) {
EXPECT_EQ(I[j], ref_I[i * k + j]);
}
}
}
} // anonymous namespace
/*************************************************************
* Test entry points
*************************************************************/
TEST(TestLowLevelIVF, IVFFlatL2) {
test_lowlevel_access("IVF32,Flat", METRIC_L2);
}
TEST(TestLowLevelIVF, PCAIVFFlatL2) {
test_lowlevel_access("PCAR16,IVF32,Flat", METRIC_L2);
}
TEST(TestLowLevelIVF, IVFFlatIP) {
test_lowlevel_access("IVF32,Flat", METRIC_INNER_PRODUCT);
}
TEST(TestLowLevelIVF, IVFSQL2) {
test_lowlevel_access("IVF32,SQ8", METRIC_L2);
}
TEST(TestLowLevelIVF, IVFSQIP) {
test_lowlevel_access("IVF32,SQ8", METRIC_INNER_PRODUCT);
}
TEST(TestLowLevelIVF, IVFPQL2) {
test_lowlevel_access("IVF32,PQ4np", METRIC_L2);
}
TEST(TestLowLevelIVF, IVFPQIP) {
test_lowlevel_access("IVF32,PQ4np", METRIC_INNER_PRODUCT);
}
TEST(TestLowLevelIVF, IVFRaBitQ) {
test_lowlevel_access("IVF32,RaBitQ", METRIC_L2);
}
TEST(TestLowLevelIVF, IVFRQ) {
test_lowlevel_access("IVF32,RQ16x8", METRIC_L2);
}
/*************************************************************
* Same for binary (a bit simpler)
*************************************************************/
namespace {
int nbit = 256;
// here d is used the number of ints -> d=32 means 128 bits
std::vector<uint8_t> make_data_binary(size_t n) {
std::vector<uint8_t> database(n * nbit / 8);
std::uniform_int_distribution<> distrib;
for (size_t i = 0; i < n * d; i++) {
database[i] = distrib(rng);
}
return database;
}
std::unique_ptr<IndexBinary> make_trained_index_binary(const char* index_type) {
auto index = std::unique_ptr<IndexBinary>(
index_binary_factory(nbit, index_type));
auto xt = make_data_binary(nt);
index->train(nt, xt.data());
return index;
}
void test_lowlevel_access_binary(const char* index_key) {
std::unique_ptr<IndexBinary> index = make_trained_index_binary(index_key);
IndexBinaryIVF* index_ivf = dynamic_cast<IndexBinaryIVF*>(index.get());
assert(index_ivf);
index_ivf->nprobe = 4;
auto xb = make_data_binary(nb);
index->add(nb, xb.data());
std::vector<idx_t> list_nos(nb);
index_ivf->quantizer->assign(nb, xb.data(), list_nos.data());
/* For binary there is no test for encoding because binary vectors
* are copied verbatim to the inverted lists */
const InvertedLists* il = index_ivf->invlists;
/** Test independent search
*
* Manually scans through inverted lists, computing distances and
* ordering results organized in a heap.
*/
// sample some example queries and get reference search results.
auto xq = make_data_binary(nq);
std::vector<idx_t> I_ref(k * nq);
std::vector<int32_t> D_ref(k * nq);
index->search(nq, xq.data(), k, D_ref.data(), I_ref.data());
// quantize the queries to get the inverted list ids to visit.
int nprobe = index_ivf->nprobe;
std::vector<idx_t> q_lists(nq * nprobe);
std::vector<int32_t> q_dis(nq * nprobe);
// quantize queries
index_ivf->quantizer->search(
nq, xq.data(), nprobe, q_dis.data(), q_lists.data());
// object that does the scanning and distance computations.
std::unique_ptr<BinaryInvertedListScanner> scanner(
index_ivf->get_InvertedListScanner());
for (int i = 0; i < nq; i++) {
std::vector<idx_t> I(k, -1);
uint32_t default_dis = 1 << 30;
std::vector<int32_t> D(k, default_dis);
scanner->set_query(xq.data() + i * index_ivf->code_size);
for (int j = 0; j < nprobe; j++) {
int list_no = q_lists[i * nprobe + j];
if (list_no < 0) {
continue;
}
scanner->set_list(list_no, q_dis[i * nprobe + j]);
// here we get the inverted lists from the InvertedLists
// object but they could come from anywhere
scanner->scan_codes(
il->list_size(list_no),
InvertedLists::ScopedCodes(il, list_no).get(),
InvertedLists::ScopedIds(il, list_no).get(),
D.data(),
I.data(),
k);
if (j == 0) {
// all results so far come from list_no, so let's check if
// the distance function works
for (int jj = 0; jj < k; jj++) {
int vno = I[jj];
if (vno < 0) {
break; // heap is not full yet
}
// we have the codes from the addition test
float computed_D = scanner->distance_to_code(
xb.data() + vno * il->code_size);
EXPECT_FLOAT_EQ(computed_D, D[jj]);
}
}
}
// re-order heap
heap_reorder<CMax<int32_t, idx_t>>(k, D.data(), I.data());
// check that we have the same results as the reference search
for (int j = 0; j < k; j++) {
// here the order is not guaranteed to be the same
// so we scan through ref results
// EXPECT_EQ (I[j], I_ref[i * k + j]);
EXPECT_LE(D[j], D_ref[i * k + k - 1]);
if (D[j] < D_ref[i * k + k - 1]) {
int j2 = 0;
while (j2 < k) {
if (I[j] == I_ref[i * k + j2]) {
break;
}
j2++;
}
EXPECT_LT(j2, k); // it was found
if (j2 < k) {
EXPECT_EQ(D[j], D_ref[i * k + j2]);
}
}
}
}
}
} // anonymous namespace
TEST(TestLowLevelIVF, IVFBinary) {
test_lowlevel_access_binary("BIVF32");
}
namespace {
void test_threaded_search(const char* index_key, MetricType metric) {
std::unique_ptr<Index> index = make_trained_index(index_key, metric);
auto xb = make_data(nb);
index->add(nb, xb.data());
/** handle the case if we have a preprocessor */
const IndexPreTransform* index_pt =
dynamic_cast<const IndexPreTransform*>(index.get());
int dt = index->d;
const float* xbt = xb.data();
std::unique_ptr<float[]> del_xbt;
if (index_pt) {
dt = index_pt->index->d;
xbt = index_pt->apply_chain(nb, xb.data());
if (xbt != xb.data()) {
del_xbt.reset((float*)xbt);
}
}
IndexIVF* index_ivf = ivflib::extract_index_ivf(index.get());
/** Test independent search
*
* Manually scans through inverted lists, computing distances and
* ordering results organized in a heap.
*/
// sample some example queries and get reference search results.
auto xq = make_data(nq);
auto ref_I = search_index(index.get(), xq.data());
// handle preprocessing
const float* xqt = xq.data();
std::unique_ptr<float[]> del_xqt;
if (index_pt) {
xqt = index_pt->apply_chain(nq, xq.data());
if (xqt != xq.data()) {
del_xqt.reset((float*)xqt);
}
}
// quantize the queries to get the inverted list ids to visit.
int nprobe = index_ivf->nprobe;
std::vector<idx_t> q_lists(nq * nprobe);
std::vector<float> q_dis(nq * nprobe);
index_ivf->quantizer->search(nq, xqt, nprobe, q_dis.data(), q_lists.data());
// now run search in this many threads
int nproc = 3;
for (int i = 0; i < nq; i++) {
// one result table per thread
std::vector<idx_t> I(k * nproc, -1);
float default_dis = metric == METRIC_L2 ? HUGE_VAL : -HUGE_VAL;
std::vector<float> D(k * nproc, default_dis);
auto search_function = [index_ivf,
&I,
&D,
dt,
i,
nproc,
xqt,
nprobe,
&q_dis,
&q_lists](int rank) {
const InvertedLists* il = index_ivf->invlists;
// object that does the scanning and distance computations.
std::unique_ptr<InvertedListScanner> scanner(
index_ivf->get_InvertedListScanner());
idx_t* local_I = I.data() + rank * k;
float* local_D = D.data() + rank * k;
scanner->set_query(xqt + i * dt);
for (int j = rank; j < nprobe; j += nproc) {
int list_no = q_lists[i * nprobe + j];
if (list_no < 0) {
continue;
}
scanner->set_list(list_no, q_dis[i * nprobe + j]);
scanner->scan_codes(
il->list_size(list_no),
InvertedLists::ScopedCodes(il, list_no).get(),
InvertedLists::ScopedIds(il, list_no).get(),
local_D,
local_I,
k);
}
};
// start the threads. Threads are numbered rank=0..nproc-1 (a la MPI)
// thread rank takes care of inverted lists
// rank, rank+nproc, rank+2*nproc,...
std::vector<std::thread> threads;
for (int rank = 0; rank < nproc; rank++) {
threads.emplace_back(search_function, rank);
}
// join threads, merge heaps
for (int rank = 0; rank < nproc; rank++) {
threads[rank].join();
if (rank == 0) {
continue; // nothing to merge
}
// merge into first result
if (metric == METRIC_L2) {
maxheap_addn(
k,
D.data(),
I.data(),
D.data() + rank * k,
I.data() + rank * k,
k);
} else {
minheap_addn(
k,
D.data(),
I.data(),
D.data() + rank * k,
I.data() + rank * k,
k);
}
}
// re-order heap
if (metric == METRIC_L2) {
maxheap_reorder(k, D.data(), I.data());
} else {
minheap_reorder(k, D.data(), I.data());
}
// check that we have the same results as the reference search
for (int j = 0; j < k; j++) {
EXPECT_EQ(I[j], ref_I[i * k + j]);
}
}
}
} // namespace
TEST(TestLowLevelIVF, ThreadedSearch) {
test_threaded_search("IVF32,Flat", METRIC_L2);
}
|