1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
|
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <cstdio>
#include <random>
#include <gtest/gtest.h>
#include <faiss/IVFlib.h>
#include <faiss/IndexFlat.h>
#include <faiss/IndexIVFFlat.h>
#include <faiss/IndexPreTransform.h>
#include <faiss/MetaIndexes.h>
#include <faiss/invlists/OnDiskInvertedLists.h>
#include "test_util.h"
namespace {
pthread_mutex_t temp_file_mutex = PTHREAD_MUTEX_INITIALIZER;
using idx_t = faiss::idx_t;
// parameters to use for the test
int d = 64;
size_t nb = 1000;
size_t nq = 100;
int nindex = 4;
int k = 10;
int nlist = 40;
int shard_size = nb / nindex;
struct CommonData {
std::vector<float> database;
std::vector<float> queries;
std::vector<idx_t> ids;
faiss::IndexFlatL2 quantizer;
CommonData() : database(nb * d), queries(nq * d), ids(nb), quantizer(d) {
std::mt19937 rng;
std::uniform_real_distribution<> distrib;
for (size_t i = 0; i < nb * d; i++) {
database[i] = distrib(rng);
}
for (size_t i = 0; i < nq * d; i++) {
queries[i] = distrib(rng);
}
for (int i = 0; i < nb; i++) {
ids[i] = 123 + 456 * i;
}
{ // just to train the quantizer
faiss::IndexIVFFlat iflat(&quantizer, d, nlist);
iflat.train(nb, database.data());
}
}
};
CommonData cd;
std::string temp_filename_template = "/tmp/faiss_tmp_XXXXXX";
/// perform a search on shards, then merge and search again and
/// compare results.
int compare_merged(
faiss::IndexShards* index_shards,
bool shift_ids,
bool standard_merge = true) {
std::vector<idx_t> refI(k * nq);
std::vector<float> refD(k * nq);
index_shards->search(nq, cd.queries.data(), k, refD.data(), refI.data());
Tempfilename filename(&temp_file_mutex, temp_filename_template);
std::vector<idx_t> newI(k * nq);
std::vector<float> newD(k * nq);
if (standard_merge) {
for (int i = 1; i < nindex; i++) {
faiss::ivflib::merge_into(
index_shards->at(0), index_shards->at(i), shift_ids);
}
index_shards->syncWithSubIndexes();
} else {
std::vector<const faiss::InvertedLists*> lists;
faiss::IndexIVF* index0 = nullptr;
size_t ntotal = 0;
for (int i = 0; i < nindex; i++) {
auto index_ivf =
dynamic_cast<faiss::IndexIVF*>(index_shards->at(i));
assert(index_ivf);
if (i == 0) {
index0 = index_ivf;
}
lists.push_back(index_ivf->invlists);
ntotal += index_ivf->ntotal;
}
auto il = new faiss::OnDiskInvertedLists(
index0->nlist, index0->code_size, filename.c_str());
il->merge_from_multiple(lists.data(), lists.size(), shift_ids);
index0->replace_invlists(il, true);
index0->ntotal = ntotal;
}
// search only on first index
index_shards->at(0)->search(
nq, cd.queries.data(), k, newD.data(), newI.data());
size_t ndiff = 0;
bool adjust_ids = shift_ids && !standard_merge;
for (size_t i = 0; i < k * nq; i++) {
idx_t new_id = adjust_ids ? refI[i] % shard_size : refI[i];
if (refI[i] != new_id) {
ndiff++;
}
}
return ndiff;
}
} // namespace
// test on IVFFlat with implicit numbering
TEST(MERGE, merge_flat_no_ids) {
faiss::IndexShards index_shards(d);
index_shards.own_indices = true;
for (int i = 0; i < nindex; i++) {
index_shards.add_shard(
new faiss::IndexIVFFlat(&cd.quantizer, d, nlist));
}
EXPECT_TRUE(index_shards.is_trained);
index_shards.add(nb, cd.database.data());
size_t prev_ntotal = index_shards.ntotal;
int ndiff = compare_merged(&index_shards, true);
EXPECT_EQ(prev_ntotal, index_shards.ntotal);
EXPECT_EQ(0, ndiff);
}
// test on IVFFlat, explicit ids
TEST(MERGE, merge_flat) {
faiss::IndexShards index_shards(d, false, false);
index_shards.own_indices = true;
for (int i = 0; i < nindex; i++) {
index_shards.add_shard(
new faiss::IndexIVFFlat(&cd.quantizer, d, nlist));
}
EXPECT_TRUE(index_shards.is_trained);
index_shards.add_with_ids(nb, cd.database.data(), cd.ids.data());
int ndiff = compare_merged(&index_shards, false);
EXPECT_GE(0, ndiff);
}
// test on IVFFlat and a VectorTransform
TEST(MERGE, merge_flat_vt) {
faiss::IndexShards index_shards(d, false, false);
index_shards.own_indices = true;
// here we have to retrain because of the vectorTransform
faiss::RandomRotationMatrix rot(d, d);
rot.init(1234);
faiss::IndexFlatL2 quantizer(d);
{ // just to train the quantizer
faiss::IndexIVFFlat iflat(&quantizer, d, nlist);
faiss::IndexPreTransform ipt(&rot, &iflat);
ipt.train(nb, cd.database.data());
}
for (int i = 0; i < nindex; i++) {
faiss::IndexPreTransform* ipt = new faiss::IndexPreTransform(
new faiss::RandomRotationMatrix(rot),
new faiss::IndexIVFFlat(&quantizer, d, nlist));
ipt->own_fields = true;
index_shards.add_shard(ipt);
}
EXPECT_TRUE(index_shards.is_trained);
index_shards.add_with_ids(nb, cd.database.data(), cd.ids.data());
size_t prev_ntotal = index_shards.ntotal;
int ndiff = compare_merged(&index_shards, false);
EXPECT_EQ(prev_ntotal, index_shards.ntotal);
EXPECT_GE(0, ndiff);
}
// put the merged invfile on disk
TEST(MERGE, merge_flat_ondisk) {
faiss::IndexShards index_shards(d, false, false);
index_shards.own_indices = true;
Tempfilename filename(&temp_file_mutex, temp_filename_template);
for (int i = 0; i < nindex; i++) {
auto ivf = new faiss::IndexIVFFlat(&cd.quantizer, d, nlist);
if (i == 0) {
auto il = new faiss::OnDiskInvertedLists(
ivf->nlist, ivf->code_size, filename.c_str());
ivf->replace_invlists(il, true);
}
index_shards.add_shard(ivf);
}
EXPECT_TRUE(index_shards.is_trained);
index_shards.add_with_ids(nb, cd.database.data(), cd.ids.data());
int ndiff = compare_merged(&index_shards, false);
EXPECT_EQ(ndiff, 0);
}
// now use ondisk specific merge
TEST(MERGE, merge_flat_ondisk_2) {
faiss::IndexShards index_shards(d, false, false);
index_shards.own_indices = true;
for (int i = 0; i < nindex; i++) {
index_shards.add_shard(
new faiss::IndexIVFFlat(&cd.quantizer, d, nlist));
}
EXPECT_TRUE(index_shards.is_trained);
index_shards.add_with_ids(nb, cd.database.data(), cd.ids.data());
int ndiff = compare_merged(&index_shards, false, false);
EXPECT_GE(0, ndiff);
}
// now use ondisk specific merge and use shift ids
TEST(MERGE, merge_flat_ondisk_3) {
faiss::IndexShards index_shards(d, false, false);
index_shards.own_indices = true;
std::vector<idx_t> ids;
for (int i = 0; i < nb; ++i) {
int id = i % shard_size;
ids.push_back(id);
}
for (int i = 0; i < nindex; i++) {
index_shards.add_shard(
new faiss::IndexIVFFlat(&cd.quantizer, d, nlist));
}
EXPECT_TRUE(index_shards.is_trained);
index_shards.add_with_ids(nb, cd.database.data(), ids.data());
int ndiff = compare_merged(&index_shards, true, false);
EXPECT_GE(0, ndiff);
}
|