1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
|
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <cstdio>
#include <cstdlib>
#include <memory>
#include <random>
#include <vector>
#include <gtest/gtest.h>
#include <faiss/IVFlib.h>
#include <faiss/IndexIVF.h>
#include <faiss/VectorTransform.h>
#include <faiss/index_factory.h>
namespace {
using idx_t = faiss::idx_t;
/*************************************************************
* Test utils
*************************************************************/
// dimension of the vectors to index
int d = 64;
// size of the database we plan to index
size_t nb = 8000;
// nb of queries
size_t nq = 200;
std::mt19937 rng;
std::vector<float> make_data(size_t n) {
std::vector<float> database(n * d);
std::uniform_real_distribution<> distrib;
for (size_t i = 0; i < n * d; i++) {
database[i] = distrib(rng);
}
return database;
}
std::unique_ptr<faiss::Index> make_index(
const char* index_type,
const std::vector<float>& x) {
auto index =
std::unique_ptr<faiss::Index>(faiss::index_factory(d, index_type));
index->train(nb, x.data());
index->add(nb, x.data());
return index;
}
/*************************************************************
* Test functions for a given index type
*************************************************************/
bool test_search_centroid(const char* index_key) {
std::vector<float> xb = make_data(nb); // database vectors
auto index = make_index(index_key, xb);
/* First test: find the centroids associated to the database
vectors and make sure that each vector does indeed appear in
the inverted list corresponding to its centroid */
std::vector<idx_t> centroid_ids(nb);
faiss::ivflib::search_centroid(
index.get(), xb.data(), nb, centroid_ids.data());
const faiss::IndexIVF* ivf = faiss::ivflib::extract_index_ivf(index.get());
for (int i = 0; i < nb; i++) {
bool found = false;
int list_no = centroid_ids[i];
int list_size = ivf->invlists->list_size(list_no);
auto* list = ivf->invlists->get_ids(list_no);
for (int j = 0; j < list_size; j++) {
if (list[j] == i) {
found = true;
break;
}
}
if (!found) {
return false;
}
}
return true;
}
int test_search_and_return_centroids(const char* index_key) {
std::vector<float> xb = make_data(nb); // database vectors
auto index = make_index(index_key, xb);
std::vector<idx_t> centroid_ids(nb);
faiss::ivflib::search_centroid(
index.get(), xb.data(), nb, centroid_ids.data());
faiss::IndexIVF* ivf = faiss::ivflib::extract_index_ivf(index.get());
ivf->nprobe = 4;
std::vector<float> xq = make_data(nq); // database vectors
int k = 5;
// compute a reference search result
std::vector<idx_t> refI(nq * k);
std::vector<float> refD(nq * k);
index->search(nq, xq.data(), k, refD.data(), refI.data());
// compute search result
std::vector<idx_t> newI(nq * k);
std::vector<float> newD(nq * k);
std::vector<idx_t> query_centroid_ids(nq);
std::vector<idx_t> result_centroid_ids(nq * k);
faiss::ivflib::search_and_return_centroids(
index.get(),
nq,
xq.data(),
k,
newD.data(),
newI.data(),
query_centroid_ids.data(),
result_centroid_ids.data());
// first verify that we have the same result as the standard search
if (newI != refI) {
return 1;
}
// then check if the result ids are indeed in the inverted list
// they are supposed to be in
for (int i = 0; i < nq * k; i++) {
int list_no = result_centroid_ids[i];
int result_no = newI[i];
if (result_no < 0) {
continue;
}
bool found = false;
int list_size = ivf->invlists->list_size(list_no);
auto* list = ivf->invlists->get_ids(list_no);
for (int j = 0; j < list_size; j++) {
if (list[j] == result_no) {
found = true;
break;
}
}
if (!found) {
return 2;
}
}
return 0;
}
} // namespace
/*************************************************************
* Test entry points
*************************************************************/
TEST(testSearchCentroid, IVFFlat) {
bool ok = test_search_centroid("IVF32,Flat");
EXPECT_TRUE(ok);
}
TEST(testSearchCentroid, PCAIVFFlat) {
bool ok = test_search_centroid("PCA16,IVF32,Flat");
EXPECT_TRUE(ok);
}
TEST(testSearchAndReturnCentroids, IVFFlat) {
int err = test_search_and_return_centroids("IVF32,Flat");
EXPECT_NE(err, 1);
EXPECT_NE(err, 2);
}
TEST(testSearchAndReturnCentroids, PCAIVFFlat) {
int err = test_search_and_return_centroids("PCA16,IVF32,Flat");
EXPECT_NE(err, 1);
EXPECT_NE(err, 2);
}
|