1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import faiss
import numpy as np
from faiss.contrib import datasets
def random_rotation(d, seed=123):
rs = np.random.RandomState(seed)
Q, _ = np.linalg.qr(rs.randn(d, d))
return Q
# based on https://gist.github.com/mdouze/0b2386c31d7fb8b20ae04f3fcbbf4d9d
class ReferenceRabitQ:
"""Exact translation of the paper
https://dl.acm.org/doi/pdf/10.1145/3654970
This is both a quantizer and serves to store the codes
"""
def __init__(self, d, Bq=4):
self.d = d
self.Bq = Bq
def train(self, xtrain, P):
self.centroid = xtrain.mean(0)
self.P = P
def rotation(self, x):
return x @ self.P
def inv_rotation(self, x):
return x @ self.P.T
def add(self, Or):
# centering & normalization
Orc = Or - self.centroid
self.O_norms = np.sqrt((Orc**2).sum(1)) # need to store the norms
O = Orc / self.O_norms[:, None]
# 3.1.3
self.Xbarb = (self.inv_rotation(Orc) > 0).astype("int8") # 0, 1
# here the encoded vectors are stored as an int array for simplicity
# but in the real code it would be as a packed uint8 array
# self.Xbarb = np.packbits(self.inv_rotation(Orc) > 0, axis=1)
# reconstruct to compute <o, obar>
Obar = self.rotation((2 * self.Xbarb - 1) / np.sqrt(self.d))
self.o_Obar = (O * Obar).sum(1) # store dot products
def distances(self, Qr):
"""compute distance estimates for the queries to the stored vectors"""
d = self.d
Bq = self.Bq
# preproc Qr
Qrc = Qr - self.centroid
Qrc_norms = np.sqrt((Qrc**2).sum(1))[:, None]
Q = Qrc
Qprime = self.inv_rotation(Q)
# quantize queries to Bq bits
mins, maxes = Qprime.min(axis=1)[:, None], Qprime.max(axis=1)[:, None]
Delta = (maxes - mins) / (2**Bq - 1)
# article mentioned a randomized variant
# qbar = np.floor((Qprime - mins) / Delta + rs.rand(nq, d))
# we'll use a non-randomized for the comparison purposes
qbar = np.round((Qprime - mins) / Delta)
# in the real implementation, this would be re-ordered
# in least-to most-significant bit
# dot product matrix, integers -- this is the expensive operation
dp = (qbar[:, None, :] * self.Xbarb[None, :, :]).sum(2)
# the operations below roll back the normalizations to get the distance
# estimates. it is likely that they could be merged
# or some of them could be left out because we are interested only
# in top-k compute <xbar, qbar> (eq 19-20)
sum_X = self.Xbarb.sum(1)
sum_Q = qbar.sum(1)[:, None]
sD = np.sqrt(d)
xbar_qbar = 2 * Delta / sD * dp
xbar_qbar += 2 * mins / sD * sum_X
xbar_qbar -= Delta / sD * sum_Q
xbar_qbar -= sD * mins
# <xbar, qbar> is close to <xbar, q'> thm 3.3
# <xbar, q'> = <obar, q> eq 17
# <obar, q> / <obar, o> estimates <q, o> (thm 3.2)
q_o = xbar_qbar / self.o_Obar
# eq 1-2 to de-normalize and get distances
dis2_q_o = self.O_norms**2 + Qrc_norms**2 - 2 * self.O_norms * q_o
return dis2_q_o
class ReferenceIVFRabitQ:
"""straightforward IVF implementation"""
def __init__(self, d, nlist, Bq=4):
self.d = d
self.nlist = nlist
self.invlists = [ReferenceRabitQ(d, Bq) for _ in range(nlist)]
self.quantizer = None
self.nprobe = 1
def train(self, xtrain, P):
if self.quantizer is None:
km = faiss.Kmeans(self.d, self.nlist, niter=10)
km.train(xtrain)
centroids = km.centroids
self.quantizer = faiss.IndexFlatL2(self.d)
self.quantizer.add(centroids)
else:
centroids = self.quantizer.reconstruct_n()
# Override the RabitQ train() to use a common random rotation
# and force centroids from the coarse quantizer
for list_no, rq in enumerate(self.invlists):
rq.centroid = centroids[list_no]
rq.P = P
def add(self, x):
_, keys = self.quantizer.search(x, 1)
keys = keys.ravel()
n_per_invlist = np.bincount(keys, minlength=self.nlist)
order = np.argsort(keys)
i0 = 0
for list_no, rab in enumerate(self.invlists):
i1 = i0 + n_per_invlist[list_no]
rab.list_size = i1 - i0
if i1 > i0:
ids = order[i0:i1]
rab.ids = ids
rab.add(x[ids])
i0 = i1
def search(self, x, k):
nq = len(x)
nprobe = self.nprobe
D = np.zeros((nq, k), dtype="float32")
I = np.zeros((nq, k), dtype=int)
D[:] = np.nan
I[:] = -1
_, Ic = self.quantizer.search(x, nprobe)
for qno, xq in enumerate(x):
# naive top-k implemetation with a full sort
q_dis = []
q_ids = []
for probe in range(nprobe):
rab = self.invlists[Ic[qno, probe]]
if rab.list_size == 0:
continue
# we cannot exploit the batch version
# of the queries (in this form)
dis = rab.distances(xq[None, :])
q_ids.append(rab.ids)
q_dis.append(dis.ravel())
q_dis = np.hstack(q_dis)
q_ids = np.hstack(q_ids)
o = q_dis.argsort()
kq = min(k, len(q_dis))
D[qno, :kq] = q_dis[o[:kq]]
I[qno, :kq] = q_ids[o[:kq]]
return D, I
class TestRaBitQ(unittest.TestCase):
def do_comparison_vs_pq_test(self, metric_type=faiss.METRIC_L2):
ds = datasets.SyntheticDataset(128, 4096, 4096, 100)
k = 10
# PQ 8-to-1
index_pq = faiss.IndexPQ(ds.d, 16, 8, metric_type)
index_pq.train(ds.get_train())
index_pq.add(ds.get_database())
_, I_pq = index_pq.search(ds.get_queries(), k)
index_rbq = faiss.IndexRaBitQ(ds.d, metric_type)
index_rbq.train(ds.get_train())
index_rbq.add(ds.get_database())
_, I_rbq = index_rbq.search(ds.get_queries(), k)
# try quantized query
rbq_params = faiss.RaBitQSearchParameters(qb=8)
_, I_rbq_q8 = index_rbq.search(ds.get_queries(), k, params=rbq_params)
rbq_params = faiss.RaBitQSearchParameters(qb=4)
_, I_rbq_q4 = index_rbq.search(ds.get_queries(), k, params=rbq_params)
index_flat = faiss.IndexFlat(ds.d, metric_type)
index_flat.train(ds.get_train())
index_flat.add(ds.get_database())
_, I_f = index_flat.search(ds.get_queries(), k)
# ensure that RaBitQ and PQ are relatively close
eval_pq = faiss.eval_intersection(I_pq[:, :k], I_f[:, :k])
eval_pq /= ds.nq * k
eval_rbq = faiss.eval_intersection(I_rbq[:, :k], I_f[:, :k])
eval_rbq /= ds.nq * k
eval_rbq_q8 = faiss.eval_intersection(I_rbq_q8[:, :k], I_f[:, :k])
eval_rbq_q8 /= ds.nq * k
eval_rbq_q4 = faiss.eval_intersection(I_rbq_q4[:, :k], I_f[:, :k])
eval_rbq_q4 /= ds.nq * k
print(
f"PQ is {eval_pq}, "
f"RaBitQ is {eval_rbq}, "
f"q8 RaBitQ is {eval_rbq_q8}, "
f"q4 RaBitQ is {eval_rbq_q4}"
)
np.testing.assert_(abs(eval_pq - eval_rbq) < 0.05)
np.testing.assert_(abs(eval_pq - eval_rbq_q8) < 0.05)
np.testing.assert_(abs(eval_pq - eval_rbq_q4) < 0.05)
np.testing.assert_(eval_pq > 0.55)
def test_comparison_vs_pq_L2(self):
self.do_comparison_vs_pq_test(faiss.METRIC_L2)
def test_comparison_vs_pq_IP(self):
self.do_comparison_vs_pq_test(faiss.METRIC_INNER_PRODUCT)
def test_comparison_vs_ref_L2_rrot(self, rrot_seed=123):
ds = datasets.SyntheticDataset(128, 4096, 4096, 1)
ref_rbq = ReferenceRabitQ(ds.d, Bq=8)
ref_rbq.train(ds.get_train(), random_rotation(ds.d, rrot_seed))
ref_rbq.add(ds.get_database())
index_rbq = faiss.IndexRaBitQ(ds.d, faiss.METRIC_L2)
index_rbq.qb = 8
# wrap with random rotations
rrot = faiss.RandomRotationMatrix(ds.d, ds.d)
rrot.init(rrot_seed)
index_cand = faiss.IndexPreTransform(rrot, index_rbq)
index_cand.train(ds.get_train())
index_cand.add(ds.get_database())
ref_dis = ref_rbq.distances(ds.get_queries())
dc = index_cand.get_distance_computer()
xq = ds.get_queries()
# ensure that the correlation coefficient is very high
dc_dist = [0] * ds.nb
dc.set_query(faiss.swig_ptr(xq[0]))
for j in range(ds.nb):
dc_dist[j] = dc(j)
corr = np.corrcoef(dc_dist, ref_dis[0])[0, 1]
print(corr)
np.testing.assert_(corr > 0.9)
def test_comparison_vs_ref_L2(self):
ds = datasets.SyntheticDataset(128, 4096, 4096, 1)
ref_rbq = ReferenceRabitQ(ds.d, Bq=8)
ref_rbq.train(ds.get_train(), np.identity(ds.d))
ref_rbq.add(ds.get_database())
index_rbq = faiss.IndexRaBitQ(ds.d, faiss.METRIC_L2)
index_rbq.qb = 8
index_rbq.train(ds.get_train())
index_rbq.add(ds.get_database())
ref_dis = ref_rbq.distances(ds.get_queries())
dc = index_rbq.get_distance_computer()
xq = ds.get_queries()
dc.set_query(faiss.swig_ptr(xq[0]))
for j in range(ds.nb):
upd_dis = dc(j)
# print(f"{j} {ref_dis[0][j]} {upd_dis}")
np.testing.assert_(abs(ref_dis[0][j] - upd_dis) < 0.001)
def do_test_serde(self, description):
ds = datasets.SyntheticDataset(32, 1000, 100, 20)
index = faiss.index_factory(ds.d, description)
index.train(ds.get_train())
index.add(ds.get_database())
Dref, Iref = index.search(ds.get_queries(), 10)
b = faiss.serialize_index(index)
index2 = faiss.deserialize_index(b)
Dnew, Inew = index2.search(ds.get_queries(), 10)
np.testing.assert_equal(Dref, Dnew)
np.testing.assert_equal(Iref, Inew)
def test_serde_rabitq(self):
self.do_test_serde("RaBitQ")
class TestIVFRaBitQ(unittest.TestCase):
def test_comparison_vs_ref_L2(self):
ds = datasets.SyntheticDataset(128, 4096, 4096, 100)
k = 10
nlist = 200
ref_rbq = ReferenceIVFRabitQ(ds.d, nlist, Bq=4)
ref_rbq.train(ds.get_train(), np.identity(ds.d))
ref_rbq.add(ds.get_database())
index_flat = faiss.IndexFlat(ds.d, faiss.METRIC_L2)
index_rbq = faiss.IndexIVFRaBitQ(
index_flat, ds.d, nlist, faiss.METRIC_L2
)
index_rbq.qb = 4
index_rbq.train(ds.get_train())
index_rbq.add(ds.get_database())
for nprobe in 1, 4, 16:
ref_rbq.nprobe = nprobe
Dref, Iref = ref_rbq.search(ds.get_queries(), k)
r_ref_k = faiss.eval_intersection(
Iref[:, :k], ds.get_groundtruth()[:, :k]
) / (ds.nq * k)
print(f"{nprobe=} k-recall@10={r_ref_k}")
params = faiss.IVFRaBitQSearchParameters()
params.qb = index_rbq.qb
params.nprobe = nprobe
_, Inew, _ = faiss.search_with_parameters(
index_rbq, ds.get_queries(), k, params, output_stats=True
)
r_new_k = faiss.eval_intersection(
Inew[:, :k], ds.get_groundtruth()[:, :k]
) / (ds.nq * k)
print(f"{nprobe=} k-recall@10={r_new_k}")
np.testing.assert_almost_equal(r_ref_k, r_new_k, 3)
def test_comparison_vs_ref_L2_rrot(self):
ds = datasets.SyntheticDataset(128, 4096, 4096, 100)
k = 10
nlist = 200
rrot_seed = 123
ref_rbq = ReferenceIVFRabitQ(ds.d, nlist, Bq=4)
ref_rbq.train(ds.get_train(), random_rotation(ds.d, rrot_seed))
ref_rbq.add(ds.get_database())
index_flat = faiss.IndexFlat(ds.d, faiss.METRIC_L2)
index_rbq = faiss.IndexIVFRaBitQ(
index_flat, ds.d, nlist, faiss.METRIC_L2
)
index_rbq.qb = 4
# wrap with random rotations
rrot = faiss.RandomRotationMatrix(ds.d, ds.d)
rrot.init(rrot_seed)
index_cand = faiss.IndexPreTransform(rrot, index_rbq)
index_cand.train(ds.get_train())
index_cand.add(ds.get_database())
for nprobe in 1, 4, 16:
ref_rbq.nprobe = nprobe
Dref, Iref = ref_rbq.search(ds.get_queries(), k)
r_ref_k = faiss.eval_intersection(
Iref[:, :k], ds.get_groundtruth()[:, :k]
) / (ds.nq * k)
print(f"{nprobe=} k-recall@10={r_ref_k}")
params = faiss.IVFRaBitQSearchParameters()
params.qb = index_rbq.qb
params.nprobe = nprobe
Dnew, Inew, stats2 = faiss.search_with_parameters(
index_cand, ds.get_queries(), k, params, output_stats=True
)
r_new_k = faiss.eval_intersection(
Inew[:, :k], ds.get_groundtruth()[:, :k]
) / (ds.nq * k)
print(f"{nprobe=} k-recall@10={r_new_k}")
np.testing.assert_almost_equal(r_ref_k, r_new_k, 2)
def do_test_serde(self, description):
ds = datasets.SyntheticDataset(32, 1000, 100, 20)
xt = ds.get_train()
xb = ds.get_database()
index = faiss.index_factory(ds.d, description)
index.train(xt)
index.add(xb)
Dref, Iref = index.search(ds.get_queries(), 10)
b = faiss.serialize_index(index)
index2 = faiss.deserialize_index(b)
Dnew, Inew = index2.search(ds.get_queries(), 10)
np.testing.assert_equal(Dref, Dnew)
np.testing.assert_equal(Iref, Inew)
def test_serde_ivfrabitq(self):
self.do_test_serde("IVF16,RaBitQ")
class TestRaBitQuantizerEncodeDecode(unittest.TestCase):
def do_test_encode_decode(self, d, metric):
# rabitq must precisely reconstruct a vector,
# which consists of +A and -A values
seed = 123
rs = np.random.RandomState(seed)
ampl = 100
n = 10
vec = (2 * rs.randint(0, 2, d * n) - 1).astype(np.float32) * ampl
vec = np.reshape(vec, (n, d))
quantizer = faiss.RaBitQuantizer(d, metric)
# encode and decode
vec_q = quantizer.compute_codes(vec)
vec_rec = quantizer.decode(vec_q)
# verify
np.testing.assert_equal(vec, vec_rec)
def test_encode_decode_L2(self):
self.do_test_encode_decode(16, faiss.METRIC_L2)
def test_encode_decode_IP(self):
self.do_test_encode_decode(16, faiss.METRIC_INNER_PRODUCT)
|