File: test_sliding_ivf.cpp

package info (click to toggle)
faiss 1.12.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 8,572 kB
  • sloc: cpp: 85,627; python: 27,889; sh: 905; ansic: 425; makefile: 41
file content (208 lines) | stat: -rw-r--r-- 5,972 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
/*
 * Copyright (c) Meta Platforms, Inc. and affiliates.
 *
 * This source code is licensed under the MIT license found in the
 * LICENSE file in the root directory of this source tree.
 */

#include <cstdio>
#include <cstdlib>

#include <memory>
#include <random>
#include <vector>

#include <gtest/gtest.h>

#include <faiss/AutoTune.h>
#include <faiss/IVFlib.h>
#include <faiss/IndexIVF.h>
#include <faiss/clone_index.h>
#include <faiss/index_factory.h>

using namespace faiss;

// dimension of the vectors to index
int d = 32;

// nb of training vectors
size_t nt = 5000;

// size of the database points per window step
size_t nb = 1000;

// nb of queries
size_t nq = 200;

int total_size = 40;
int window_size = 10;

std::vector<float> make_data(size_t n) {
    std::vector<float> database(n * d);
    std::mt19937 rng;
    std::uniform_real_distribution<> distrib;
    for (size_t i = 0; i < n * d; i++) {
        database[i] = distrib(rng);
    }
    return database;
}

std::unique_ptr<Index> make_trained_index(const char* index_type) {
    auto index = std::unique_ptr<Index>(index_factory(d, index_type));
    auto xt = make_data(nt * d);
    index->train(nt, xt.data());
    ParameterSpace().set_index_parameter(index.get(), "nprobe", 4);
    return index;
}

std::vector<idx_t> search_index(Index* index, const float* xq) {
    int k = 10;
    std::vector<idx_t> I(k * nq);
    std::vector<float> D(k * nq);
    index->search(nq, xq, k, D.data(), I.data());
    return I;
}

/*************************************************************
 * Test functions for a given index type
 *************************************************************/

// make a few slices of indexes that can be merged
void make_index_slices(
        const Index* trained_index,
        std::vector<std::unique_ptr<Index>>& sub_indexes) {
    for (int i = 0; i < total_size; i++) {
        sub_indexes.emplace_back(clone_index(trained_index));

        Index* index = sub_indexes.back().get();

        auto xb = make_data(nb * d);
        std::vector<faiss::idx_t> ids(nb);
        std::mt19937 rng;
        std::uniform_int_distribution<> distrib;
        for (int j = 0; j < nb; j++) {
            ids[j] = distrib(rng);
        }
        index->add_with_ids(nb, xb.data(), ids.data());
    }
}

// build merged index explicitly at sliding window position i
Index* make_merged_index(
        const Index* trained_index,
        const std::vector<std::unique_ptr<Index>>& sub_indexes,
        int i) {
    Index* merged_index = clone_index(trained_index);
    for (int j = i - window_size + 1; j <= i; j++) {
        if (j < 0 || j >= total_size) {
            continue;
        }
        std::unique_ptr<Index> sub_index(clone_index(sub_indexes[j].get()));
        IndexIVF* ivf0 = ivflib::extract_index_ivf(merged_index);
        IndexIVF* ivf1 = ivflib::extract_index_ivf(sub_index.get());
        ivf0->merge_from(*ivf1, 0);
        merged_index->ntotal = ivf0->ntotal;
    }
    return merged_index;
}

int test_sliding_window(const char* index_key) {
    std::unique_ptr<Index> trained_index = make_trained_index(index_key);

    // make the index slices
    std::vector<std::unique_ptr<Index>> sub_indexes;

    make_index_slices(trained_index.get(), sub_indexes);

    // now slide over the windows
    std::unique_ptr<Index> index(clone_index(trained_index.get()));
    ivflib::SlidingIndexWindow window(index.get());

    auto xq = make_data(nq * d);

    for (int i = 0; i < total_size + window_size; i++) {
        // update the index
        window.step(
                i < total_size ? sub_indexes[i].get() : nullptr,
                i >= window_size);

        auto new_res = search_index(index.get(), xq.data());

        std::unique_ptr<Index> merged_index(
                make_merged_index(trained_index.get(), sub_indexes, i));

        auto ref_res = search_index(merged_index.get(), xq.data());

        EXPECT_EQ(ref_res.size(), new_res.size());

        EXPECT_EQ(ref_res, new_res);
    }
    return 0;
}

int test_sliding_invlists(const char* index_key) {
    std::unique_ptr<Index> trained_index = make_trained_index(index_key);

    // make the index slices
    std::vector<std::unique_ptr<Index>> sub_indexes;

    make_index_slices(trained_index.get(), sub_indexes);

    // now slide over the windows
    std::unique_ptr<Index> index(clone_index(trained_index.get()));
    IndexIVF* index_ivf = ivflib::extract_index_ivf(index.get());

    auto xq = make_data(nq * d);

    for (int i = 0; i < total_size + window_size; i++) {
        // update the index
        std::vector<const InvertedLists*> ils;
        for (int j = i - window_size + 1; j <= i; j++) {
            if (j < 0 || j >= total_size) {
                continue;
            }
            ils.push_back(
                    ivflib::extract_index_ivf(sub_indexes[j].get())->invlists);
        }
        if (ils.size() == 0) {
            continue;
        }

        ConcatenatedInvertedLists* ci =
                new ConcatenatedInvertedLists(ils.size(), ils.data());

        // will be deleted by the index
        index_ivf->replace_invlists(ci, true);

        auto new_res = search_index(index.get(), xq.data());

        std::unique_ptr<Index> merged_index(
                make_merged_index(trained_index.get(), sub_indexes, i));

        auto ref_res = search_index(merged_index.get(), xq.data());

        EXPECT_EQ(ref_res.size(), new_res.size());
        EXPECT_EQ(ref_res, new_res);
    }
    return 0;
}

/*************************************************************
 * Test entry points
 *************************************************************/

TEST(SlidingWindow, IVFFlat) {
    test_sliding_window("IVF32,Flat");
}

TEST(SlidingWindow, PCAIVFFlat) {
    test_sliding_window("PCA24,IVF32,Flat");
}

TEST(SlidingInvlists, IVFFlat) {
    test_sliding_invlists("IVF32,Flat");
}

TEST(SlidingInvlists, PCAIVFFlat) {
    test_sliding_invlists("PCA24,IVF32,Flat");
}