1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import numpy as np
import faiss
import getpass
from .vecs_io import fvecs_read, ivecs_read, bvecs_mmap, fvecs_mmap, bvecs_iter, bvecs_iter_chunked
from .exhaustive_search import knn
class Dataset:
""" Generic abstract class for a test dataset """
def __init__(self):
""" the constructor should set the following fields: """
self.d = -1
self.metric = 'L2' # or IP
self.nq = -1
self.nb = -1
self.nt = -1
def get_queries(self):
""" return the queries as a (nq, d) array """
raise NotImplementedError()
def get_train(self, maxtrain=None):
""" return the queries as a (nt, d) array """
raise NotImplementedError()
def get_database(self):
""" return the queries as a (nb, d) array """
raise NotImplementedError()
def database_iterator(self, bs=128, split=(1, 0)):
"""returns an iterator on database vectors.
bs is the number of vectors per batch
split = (nsplit, rank) means the dataset is split in nsplit
shards and we want shard number rank
The default implementation just iterates over the full matrix
returned by get_dataset.
"""
xb = self.get_database()
nsplit, rank = split
i0, i1 = self.nb * rank // nsplit, self.nb * (rank + 1) // nsplit
for j0 in range(i0, i1, bs):
yield xb[j0: min(j0 + bs, i1)]
def get_groundtruth(self, k=None):
""" return the ground truth for k-nearest neighbor search """
raise NotImplementedError()
def get_groundtruth_range(self, thresh=None):
""" return the ground truth for range search """
raise NotImplementedError()
def __str__(self):
return (f"dataset in dimension {self.d}, with metric {self.metric}, "
f"size: Q {self.nq} B {self.nb} T {self.nt}")
def check_sizes(self):
""" runs the previous and checks the sizes of the matrices """
assert self.get_queries().shape == (self.nq, self.d)
if self.nt > 0:
xt = self.get_train(maxtrain=123)
assert xt.shape == (123, self.d), "shape=%s" % (xt.shape, )
assert self.get_database().shape == (self.nb, self.d)
assert self.get_groundtruth(k=13).shape == (self.nq, 13)
class SyntheticDataset(Dataset):
"""A dataset that is not completely random but still challenging to
index
"""
def __init__(self, d, nt, nb, nq, metric='L2', seed=1338):
Dataset.__init__(self)
self.d, self.nt, self.nb, self.nq = d, nt, nb, nq
d1 = 10 # intrinsic dimension (more or less)
n = nb + nt + nq
rs = np.random.RandomState(seed)
x = rs.normal(size=(n, d1))
x = np.dot(x, rs.rand(d1, d))
# now we have a d1-dim ellipsoid in d-dimensional space
# higher factor (>4) -> higher frequency -> less linear
x = x * (rs.rand(d) * 4 + 0.1)
x = np.sin(x)
x = x.astype('float32')
self.metric = metric
self.xt = x[:nt]
self.xb = x[nt:nt + nb]
self.xq = x[nt + nb:]
def get_queries(self):
return self.xq
def get_train(self, maxtrain=None):
maxtrain = maxtrain if maxtrain is not None else self.nt
return self.xt[:maxtrain]
def get_database(self):
return self.xb
def get_groundtruth(self, k=100):
return knn(
self.xq, self.xb, k,
faiss.METRIC_L2 if self.metric == 'L2' else faiss.METRIC_INNER_PRODUCT
)[1]
############################################################################
# The following datasets are a few standard open-source datasets
# they should be stored in a directory, and we start by guessing where
# that directory is
############################################################################
username = getpass.getuser()
for dataset_basedir in (
'/datasets01/simsearch/041218/',
'/mnt/vol/gfsai-flash3-east/ai-group/datasets/simsearch/',
f'/home/{username}/simsearch/data/'):
if os.path.exists(dataset_basedir):
break
else:
# users can link their data directory to `./data`
dataset_basedir = 'data/'
def set_dataset_basedir(path):
global dataset_basedir
dataset_basedir = path
class DatasetSIFT1M(Dataset):
"""
The original dataset is available at: http://corpus-texmex.irisa.fr/
(ANN_SIFT1M)
"""
def __init__(self):
Dataset.__init__(self)
self.d, self.nt, self.nb, self.nq = 128, 100000, 1000000, 10000
self.basedir = dataset_basedir + 'sift1M/'
def get_queries(self):
return fvecs_read(self.basedir + "sift_query.fvecs")
def get_train(self, maxtrain=None):
maxtrain = maxtrain if maxtrain is not None else self.nt
return fvecs_read(self.basedir + "sift_learn.fvecs")[:maxtrain]
def get_database(self):
return fvecs_read(self.basedir + "sift_base.fvecs")
def get_groundtruth(self, k=None):
gt = ivecs_read(self.basedir + "sift_groundtruth.ivecs")
if k is not None:
assert k <= 100
gt = gt[:, :k]
return gt
def sanitize(x):
return np.ascontiguousarray(x, dtype='float32')
class DatasetBigANN(Dataset):
"""
The original dataset is available at: http://corpus-texmex.irisa.fr/
(ANN_SIFT1B)
"""
def __init__(self, nb_M=1000):
Dataset.__init__(self)
assert nb_M in (1, 2, 5, 10, 20, 50, 100, 200, 500, 1000)
self.nb_M = nb_M
nb = nb_M * 10**6
self.d, self.nt, self.nb, self.nq = 128, 10**8, nb, 10000
self.basedir = dataset_basedir + 'bigann/'
def get_queries(self):
return sanitize(bvecs_mmap(self.basedir + 'bigann_query.bvecs')[:])
def get_train(self, maxtrain=None):
maxtrain = maxtrain if maxtrain is not None else self.nt
return sanitize(bvecs_mmap(self.basedir + 'bigann_learn.bvecs')[:maxtrain])
def get_groundtruth(self, k=None):
gt = ivecs_read(self.basedir + 'gnd/idx_%dM.ivecs' % self.nb_M)
if k is not None:
assert k <= 100
gt = gt[:, :k]
return gt
def get_database(self):
assert self.nb_M < 100, "dataset too large, use iterator"
return sanitize(bvecs_mmap(self.basedir + 'bigann_base.bvecs')[:self.nb])
def database_iterator(self, bs=128, split=(1, 0)):
xb = bvecs_mmap(self.basedir + 'bigann_base.bvecs')
nsplit, rank = split
i0, i1 = self.nb * rank // nsplit, self.nb * (rank + 1) // nsplit
for j0 in range(i0, i1, bs):
yield sanitize(xb[j0: min(j0 + bs, i1)])
class DatasetDeep1B(Dataset):
"""
See
https://github.com/facebookresearch/faiss/tree/main/benchs#getting-deep1b
on how to get the data
"""
def __init__(self, nb=10**9):
Dataset.__init__(self)
nb_to_name = {
10**5: '100k',
10**6: '1M',
10**7: '10M',
10**8: '100M',
10**9: '1B'
}
assert nb in nb_to_name
self.d, self.nt, self.nb, self.nq = 96, 358480000, nb, 10000
self.basedir = dataset_basedir + 'deep1b/'
self.gt_fname = "%sdeep%s_groundtruth.ivecs" % (
self.basedir, nb_to_name[self.nb])
def get_queries(self):
return sanitize(fvecs_read(self.basedir + "deep1B_queries.fvecs"))
def get_train(self, maxtrain=None):
maxtrain = maxtrain if maxtrain is not None else self.nt
return sanitize(fvecs_mmap(self.basedir + "learn.fvecs")[:maxtrain])
def get_groundtruth(self, k=None):
gt = ivecs_read(self.gt_fname)
if k is not None:
assert k <= 100
gt = gt[:, :k]
return gt
def get_database(self):
assert self.nb <= 10**8, "dataset too large, use iterator"
return sanitize(fvecs_mmap(self.basedir + "base.fvecs")[:self.nb])
def database_iterator(self, bs=128, split=(1, 0)):
xb = fvecs_mmap(self.basedir + "base.fvecs")
nsplit, rank = split
i0, i1 = self.nb * rank // nsplit, self.nb * (rank + 1) // nsplit
for j0 in range(i0, i1, bs):
yield sanitize(xb[j0: min(j0 + bs, i1)])
class DatasetGlove(Dataset):
"""
Data from http://ann-benchmarks.com/glove-100-angular.hdf5
"""
def __init__(self, loc=None, download=False):
import h5py
assert not download, "not implemented"
if not loc:
loc = dataset_basedir + 'glove/glove-100-angular.hdf5'
self.glove_h5py = h5py.File(loc, 'r')
# IP and L2 are equivalent in this case, but it is traditionally seen as an IP dataset
self.metric = 'IP'
self.d, self.nt = 100, 0
self.nb = self.glove_h5py['train'].shape[0]
self.nq = self.glove_h5py['test'].shape[0]
def get_queries(self):
xq = np.array(self.glove_h5py['test'])
faiss.normalize_L2(xq)
return xq
def get_database(self):
xb = np.array(self.glove_h5py['train'])
faiss.normalize_L2(xb)
return xb
def get_groundtruth(self, k=None):
gt = self.glove_h5py['neighbors']
if k is not None:
assert k <= 100
gt = gt[:, :k]
return gt
class DatasetMusic100(Dataset):
"""
get dataset from
https://github.com/stanis-morozov/ip-nsw#dataset
"""
def __init__(self):
Dataset.__init__(self)
self.d, self.nt, self.nb, self.nq = 100, 0, 10**6, 10000
self.metric = 'IP'
self.basedir = dataset_basedir + 'music-100/'
def get_queries(self):
xq = np.fromfile(self.basedir + 'query_music100.bin', dtype='float32')
xq = xq.reshape(-1, 100)
return xq
def get_database(self):
xb = np.fromfile(self.basedir + 'database_music100.bin', dtype='float32')
xb = xb.reshape(-1, 100)
return xb
def get_groundtruth(self, k=None):
gt = np.load(self.basedir + 'gt.npy')
if k is not None:
assert k <= 100
gt = gt[:, :k]
return gt
class DatasetGIST1M(Dataset):
"""
The original dataset is available at: http://corpus-texmex.irisa.fr/
(ANN_GIST1M)
"""
def __init__(self):
Dataset.__init__(self)
self.d, self.nt, self.nb, self.nq = 960, 100000, 1000000, 10000
self.basedir = dataset_basedir + 'gist1M/'
def get_queries(self):
return fvecs_read(self.basedir + "gist_query.fvecs")
def get_train(self, maxtrain=None):
maxtrain = maxtrain if maxtrain is not None else self.nt
return fvecs_read(self.basedir + "gist_learn.fvecs")[:maxtrain]
def get_database(self):
return fvecs_read(self.basedir + "gist_base.fvecs")
def get_groundtruth(self, k=None):
gt = ivecs_read(self.basedir + "gist_groundtruth.ivecs")
if k is not None:
assert k <= 100
gt = gt[:, :k]
return gt
class DatasetDINO10B(Dataset):
"""
Data from https://dl.fbaipublicfiles.com/large_objects/dino_vitl_10B/
The dataset contains 10 billion 1024-d vectors extracted from image patches from the YFCC100M dataset, using a Dino-ViT-L 16 model (facebook/dinov3-vitl16-pretrain-lvd1689m).
The dataset is sharded in multiple chunked .bvecs files. Downloading instructions can be obtained with "wget https://dl.fbaipublicfiles.com/large_objects/dino_vitl_10B/README.md".
Supported sizes : 100k 200k 500k 1M ... 5B 10B listed in supported_nbs (see __init__).
"""
def __init__(self, nb, ignore_supported = False):
Dataset.__init__(self)
supported_nbs = [100_000, 200_000, 500_000, 1_000_000, 2_000_000, 5_000_000, 10_000_000, 20_000_000, 50_000_000, 100_000_000, 200_000_000, 500_000_000, 1_000_000_000, 2_000_000_000, 5_000_000_000, 10_000_000_000]
if nb not in supported_nbs and not ignore_supported:
raise ValueError(f"Unsupported dataset size: {nb}, supported values are: {supported_nbs}")
if not os.path.exists(dataset_basedir):
raise ValueError(f"Provided dataset base directory does not exist: {dataset_basedir}")
self.basedir = dataset_basedir + "dino_vitl_10B/"
self.indexdir = self.basedir + "chunked_base_10B"
assert os.path.exists(self.indexdir), f"Index path should exist, check your dataset path: {self.indexdir}"
self.queriesdir = self.basedir + "queries_clean.bvecs"
assert os.path.exists(self.queriesdir), f"Queries path should exist as dataset size {nb} is supported: {self.queriesdir}"
self.gtsdir = self.basedir + "gts/" + "gts_dino_patch_" + str(nb) + "_" + "k10.npy"
self.train_queriesdir = self.basedir + "train_queries_99M.bvecs"
self.nb = nb
self.d = 1024
self.nq = 100_000
self.nt = 99_000_000
self.metric = "L2"
def get_queries(self):
"""Get all vectors as a single array"""
queries = bvecs_mmap(self.queriesdir)
return sanitize(queries)
def get_train(self, maxtrain = None):
"""Get training query vectors as a single array"""
if maxtrain is None or maxtrain > 10_000_000:
raise NotImplementedError("The training set is potentially too large to fit in RAM (400 GB of data). Please use train_iterator or use maxtrain parameter below 10_000_000 to get the first maxtrain training vectors.")
return sanitize(bvecs_mmap(self.train_queriesdir)[:maxtrain])
def get_database(self):
"""Get all database vectors as a single array"""
if self.nb > 10_000_000:
raise NotImplementedError("The dataset is potentially too large to fit in RAM. Please use database_iterator or use a dataset size equal to or below 10_000_000.")
else:
return sanitize(bvecs_iter_chunked(self.indexdir, batch_size=self.nb).__next__())
def database_iterator(self, bs=10_000):
"""Iterator over the database of size nb, corresponding to the first nb vectors in the .bvecs file"""
total_read = 0
for batch in bvecs_iter_chunked(self.indexdir, batch_size=bs):
if total_read + batch.shape[0] > self.nb:
batch = batch[:self.nb - total_read]
yield sanitize(batch)
total_read += batch.shape[0]
if total_read >= self.nb:
break
def train_iterator(self, bs=10_000):
"""Iterator over all training query vectors in the .bvecs file"""
for batch in bvecs_iter(self.train_queriesdir, batch_size=bs):
yield sanitize(batch)
def get_groundtruth(self, k = 10):
"""Get ground truth from .npy file"""
if k > 10:
raise NotImplementedError("Ground truth files only available for k<=10")
gts = np.load(self.gtsdir)
gts = gts[:, :k]
return gts
def distance(self):
return "euclidean"
def dataset_from_name(dataset='deep1M', download=False):
""" converts a string describing a dataset to a Dataset object
Supports sift1M, bigann1M..bigann1B, deep1M..deep1B, music-100 and glove
"""
if dataset == 'sift1M':
return DatasetSIFT1M()
elif dataset == 'gist1M':
return DatasetGIST1M()
elif dataset.startswith('bigann'):
dbsize = 1000 if dataset == "bigann1B" else int(dataset[6:-1])
return DatasetBigANN(nb_M=dbsize)
elif dataset.startswith("deep"):
szsuf = dataset[4:]
if szsuf[-1] == 'M':
dbsize = 10 ** 6 * int(szsuf[:-1])
elif szsuf == '1B':
dbsize = 10 ** 9
elif szsuf[-1] == 'k':
dbsize = 1000 * int(szsuf[:-1])
else:
assert False, "did not recognize suffix " + szsuf
return DatasetDeep1B(nb=dbsize)
elif dataset == "music-100":
return DatasetMusic100()
elif dataset == "glove":
return DatasetGlove(download=download)
elif dataset.startswith("dino"):
dbsize = 10_000_000_000 if dataset == "dino10B" else int(dataset[4:])
return DatasetDINO10B(nb=dbsize)
else:
raise RuntimeError("unknown dataset " + dataset)
|