File: demo_imi_flat.cpp

package info (click to toggle)
faiss 1.13.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 9,228 kB
  • sloc: cpp: 91,727; python: 31,865; sh: 874; ansic: 425; makefile: 41
file content (155 lines) | stat: -rw-r--r-- 4,873 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
/*
 * Copyright (c) Meta Platforms, Inc. and affiliates.
 *
 * This source code is licensed under the MIT license found in the
 * LICENSE file in the root directory of this source tree.
 */

#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <random>

#include <sys/time.h>

#include <faiss/IndexFlat.h>
#include <faiss/IndexIVFFlat.h>
#include <faiss/IndexPQ.h>

double elapsed() {
    struct timeval tv;
    gettimeofday(&tv, nullptr);
    return tv.tv_sec + tv.tv_usec * 1e-6;
}

int main() {
    double t0 = elapsed();

    // dimension of the vectors to index
    int d = 128;

    // size of the database we plan to index
    size_t nb = 1000 * 1000;

    // make a set of nt training vectors in the unit cube
    // (could be the database)
    size_t nt = 100 * 1000;

    //---------------------------------------------------------------
    // Define the core quantizer
    // We choose a multiple inverted index for faster training with less data
    // and because it usually offers best accuracy/speed trade-offs
    //
    // We here assume that its lifespan of this coarse quantizer will cover the
    // lifespan of the inverted-file quantizer IndexIVFFlat below
    // With dynamic allocation, one may give the responsibility to free the
    // quantizer to the inverted-file index (with attribute do_delete_quantizer)
    //
    // Note: a regular clustering algorithm would be defined as:
    //       faiss::IndexFlatL2 coarse_quantizer (d);
    //
    // Use nhash=2 subquantizers used to define the product coarse quantizer
    // Number of bits: we will have 2^nbits_coarse centroids per subquantizer
    //                 meaning (2^12)^nhash distinct inverted lists
    size_t nhash = 2;
    size_t nbits_subq = int(log2(nb + 1) / 2);     // good choice in general
    size_t ncentroids = 1 << (nhash * nbits_subq); // total # of centroids

    faiss::MultiIndexQuantizer coarse_quantizer(d, nhash, nbits_subq);

    printf("IMI (%ld,%ld): %ld virtual centroids (target: %ld base vectors)",
           nhash,
           nbits_subq,
           ncentroids,
           nb);

    // the coarse quantizer should not be deallocated before the index
    // 4 = nb of bytes per code (d must be a multiple of this)
    // 8 = nb of bits per sub-code (almost always 8)
    faiss::MetricType metric = faiss::METRIC_L2; // can be METRIC_INNER_PRODUCT
    faiss::IndexIVFFlat index(&coarse_quantizer, d, ncentroids, metric);
    index.quantizer_trains_alone = true;

    // define the number of probes. 2048 is for high-dim, overkill in practice
    // Use 4-1024 depending on the trade-off speed accuracy that you want
    index.nprobe = 2048;

    std::mt19937 rng;
    std::uniform_real_distribution<> distrib;

    { // training
        printf("[%.3f s] Generating %ld vectors in %dD for training\n",
               elapsed() - t0,
               nt,
               d);

        std::vector<float> trainvecs(nt * d);
        for (size_t i = 0; i < nt * d; i++) {
            trainvecs[i] = distrib(rng);
        }

        printf("[%.3f s] Training the index\n", elapsed() - t0);
        index.verbose = true;
        index.train(nt, trainvecs.data());
    }

    size_t nq;
    std::vector<float> queries;

    { // populating the database
        printf("[%.3f s] Building a dataset of %ld vectors to index\n",
               elapsed() - t0,
               nb);

        std::vector<float> database(nb * d);
        for (size_t i = 0; i < nb * d; i++) {
            database[i] = distrib(rng);
        }

        printf("[%.3f s] Adding the vectors to the index\n", elapsed() - t0);

        index.add(nb, database.data());

        // remember a few elements from the database as queries
        int i0 = 1234;
        int i1 = 1244;

        nq = i1 - i0;
        queries.resize(nq * d);
        for (int i = i0; i < i1; i++) {
            for (int j = 0; j < d; j++) {
                queries[(i - i0) * d + j] = database[i * d + j];
            }
        }
    }

    { // searching the database
        int k = 5;
        printf("[%.3f s] Searching the %d nearest neighbors "
               "of %ld vectors in the index\n",
               elapsed() - t0,
               k,
               nq);

        std::vector<faiss::idx_t> nns(k * nq);
        std::vector<float> dis(k * nq);

        index.search(nq, queries.data(), k, dis.data(), nns.data());

        printf("[%.3f s] Query results (vector ids, then distances):\n",
               elapsed() - t0);

        for (int i = 0; i < nq; i++) {
            printf("query %2d: ", i);
            for (int j = 0; j < k; j++) {
                printf("%7ld ", nns[j + i * k]);
            }
            printf("\n     dis: ");
            for (int j = 0; j < k; j++) {
                printf("%7g ", dis[j + i * k]);
            }
            printf("\n");
        }
    }
    return 0;
}