1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <random>
#include <sys/time.h>
#include <faiss/IndexFlat.h>
#include <faiss/IndexIVFFlat.h>
#include <faiss/IndexPQ.h>
double elapsed() {
struct timeval tv;
gettimeofday(&tv, nullptr);
return tv.tv_sec + tv.tv_usec * 1e-6;
}
int main() {
double t0 = elapsed();
// dimension of the vectors to index
int d = 128;
// size of the database we plan to index
size_t nb = 1000 * 1000;
// make a set of nt training vectors in the unit cube
// (could be the database)
size_t nt = 100 * 1000;
//---------------------------------------------------------------
// Define the core quantizer
// We choose a multiple inverted index for faster training with less data
// and because it usually offers best accuracy/speed trade-offs
//
// We here assume that its lifespan of this coarse quantizer will cover the
// lifespan of the inverted-file quantizer IndexIVFFlat below
// With dynamic allocation, one may give the responsibility to free the
// quantizer to the inverted-file index (with attribute do_delete_quantizer)
//
// Note: a regular clustering algorithm would be defined as:
// faiss::IndexFlatL2 coarse_quantizer (d);
//
// Use nhash=2 subquantizers used to define the product coarse quantizer
// Number of bits: we will have 2^nbits_coarse centroids per subquantizer
// meaning (2^12)^nhash distinct inverted lists
size_t nhash = 2;
size_t nbits_subq = int(log2(nb + 1) / 2); // good choice in general
size_t ncentroids = 1 << (nhash * nbits_subq); // total # of centroids
faiss::MultiIndexQuantizer coarse_quantizer(d, nhash, nbits_subq);
printf("IMI (%ld,%ld): %ld virtual centroids (target: %ld base vectors)",
nhash,
nbits_subq,
ncentroids,
nb);
// the coarse quantizer should not be deallocated before the index
// 4 = nb of bytes per code (d must be a multiple of this)
// 8 = nb of bits per sub-code (almost always 8)
faiss::MetricType metric = faiss::METRIC_L2; // can be METRIC_INNER_PRODUCT
faiss::IndexIVFFlat index(&coarse_quantizer, d, ncentroids, metric);
index.quantizer_trains_alone = true;
// define the number of probes. 2048 is for high-dim, overkill in practice
// Use 4-1024 depending on the trade-off speed accuracy that you want
index.nprobe = 2048;
std::mt19937 rng;
std::uniform_real_distribution<> distrib;
{ // training
printf("[%.3f s] Generating %ld vectors in %dD for training\n",
elapsed() - t0,
nt,
d);
std::vector<float> trainvecs(nt * d);
for (size_t i = 0; i < nt * d; i++) {
trainvecs[i] = distrib(rng);
}
printf("[%.3f s] Training the index\n", elapsed() - t0);
index.verbose = true;
index.train(nt, trainvecs.data());
}
size_t nq;
std::vector<float> queries;
{ // populating the database
printf("[%.3f s] Building a dataset of %ld vectors to index\n",
elapsed() - t0,
nb);
std::vector<float> database(nb * d);
for (size_t i = 0; i < nb * d; i++) {
database[i] = distrib(rng);
}
printf("[%.3f s] Adding the vectors to the index\n", elapsed() - t0);
index.add(nb, database.data());
// remember a few elements from the database as queries
int i0 = 1234;
int i1 = 1244;
nq = i1 - i0;
queries.resize(nq * d);
for (int i = i0; i < i1; i++) {
for (int j = 0; j < d; j++) {
queries[(i - i0) * d + j] = database[i * d + j];
}
}
}
{ // searching the database
int k = 5;
printf("[%.3f s] Searching the %d nearest neighbors "
"of %ld vectors in the index\n",
elapsed() - t0,
k,
nq);
std::vector<faiss::idx_t> nns(k * nq);
std::vector<float> dis(k * nq);
index.search(nq, queries.data(), k, dis.data(), nns.data());
printf("[%.3f s] Query results (vector ids, then distances):\n",
elapsed() - t0);
for (int i = 0; i < nq; i++) {
printf("query %2d: ", i);
for (int j = 0; j < k; j++) {
printf("%7ld ", nns[j + i * k]);
}
printf("\n dis: ");
for (int j = 0; j < k; j++) {
printf("%7g ", dis[j + i * k]);
}
printf("\n");
}
}
return 0;
}
|