1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
|
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <climits>
#include <cstdio>
#include <memory>
#include <faiss/IVFlib.h>
#include <faiss/IndexAdditiveQuantizer.h>
#include <faiss/IndexIVFAdditiveQuantizer.h>
#include <faiss/MetricType.h>
#include <faiss/utils/distances.h>
#include <faiss/utils/hamming.h>
#include <faiss/utils/random.h>
#include <faiss/utils/utils.h>
/* This demo file shows how to:
* - use a DistanceComputer to compute distances with encoded vectors
* - in the context of an IVF, how to split an additive quantizer into an
* AdditiveCoarseQuantizer and a ResidualQuantizer, in two different ways, with
* and without storing the prefix.
*/
int main() {
/******************************************
* Generate a test dataset
******************************************/
using idx_t = faiss::idx_t;
size_t d = 128;
size_t nt = 10000;
size_t nb = 10000;
size_t nq = 100;
double t0 = faiss::getmillisecs();
auto tic = [t0]() {
printf("[%.3f s] ", (faiss::getmillisecs() - t0) / 1000);
};
tic();
printf("sampling dataset of %zd dim vectors, Q %zd B %zd T %zd\n",
d,
nq,
nb,
nt);
std::vector<float> buf(d * (nq + nt + nb));
faiss::rand_smooth_vectors(nq + nt + nb, d, buf.data(), 1234);
const float* xt = buf.data();
const float* xb = buf.data() + nt * d;
const float* xq = buf.data() + (nt + nb) * d;
idx_t k = 10;
std::vector<idx_t> gt(k * nq);
std::vector<float> unused(k * nq);
tic();
printf("compute ground truth, k=%zd\n", k);
faiss::knn_L2sqr(xq, xb, d, nq, nb, k, unused.data(), gt.data());
// a function to compute the accuracy
auto accuracy = [&](const idx_t* I) {
idx_t accu = 0;
for (idx_t q = 0; q < nq; q++) {
accu += faiss::ranklist_intersection_size(
k, gt.data() + q * k, k, I + q * k);
}
return double(accu) / (k * nq);
};
/******************************************
* Prepare the residual quantizer
******************************************/
faiss::ResidualQuantizer rq(
d, 7, 6, faiss::AdditiveQuantizer::ST_norm_qint8);
// do cheap and inaccurate training
rq.cp.niter = 5;
rq.max_beam_size = 5;
rq.train_type = 0;
tic();
printf("training the residual quantizer beam_size=%d\n", rq.max_beam_size);
rq.train(nt, xt);
tic();
printf("encoding the database, code_size=%zd\n", rq.code_size);
size_t code_size = rq.code_size;
std::vector<uint8_t> raw_codes(nb * code_size);
rq.compute_codes(xb, raw_codes.data(), nb);
/****************************************************************
* Make an index that uses that residual quantizer
* Verify that a distance computer gives the same distances
****************************************************************/
{
faiss::IndexResidualQuantizer index(
rq.d, rq.nbits, faiss::METRIC_L2, rq.search_type);
// override trained index
index.rq = rq;
index.is_trained = true;
// override vectors
index.codes = faiss::MaybeOwnedVector<uint8_t>(raw_codes);
index.ntotal = nb;
tic();
printf("IndexResidualQuantizer ready, searching\n");
std::vector<float> D(k * nq);
std::vector<idx_t> I(k * nq);
index.search(nq, xq, k, D.data(), I.data());
tic();
printf("Accuracy (intersection @ %zd): %.3f\n", k, accuracy(I.data()));
std::unique_ptr<faiss::FlatCodesDistanceComputer> dc(
index.get_FlatCodesDistanceComputer());
float max_diff12 = 0, max_diff13 = 0;
for (idx_t q = 0; q < nq; q++) {
const float* query = xq + q * d;
dc->set_query(query);
for (int i = 0; i < k; i++) {
// 3 ways of computing the same distance
// distance returned by the index
float dis1 = D[q * k + i];
// distance returned by the DistanceComputer that accesses the
// index
idx_t db_index = I[q * k + i];
float dis2 = (*dc)(db_index);
// distance computer from a code that does not belong to the
// index
const uint8_t* code = raw_codes.data() + code_size * db_index;
float dis3 = dc->distance_to_code(code);
max_diff12 = std::max(std::abs(dis1 - dis2), max_diff12);
max_diff13 = std::max(std::abs(dis1 - dis3), max_diff13);
}
}
tic();
printf("Max DistanceComputer discrepancy 1-2: %g 1-3: %g\n",
max_diff12,
max_diff13);
}
/****************************************************************
* Make an IVF index that uses the first 2 levels as a coarse quantizer
* The IVF codes contain the full code (ie. redundant with the coarse
*quantizer code)
****************************************************************/
{
// build a coarse quantizer from the 2 first levels of the RQ
std::vector<size_t> nbits(2);
std::copy(rq.nbits.begin(), rq.nbits.begin() + 2, nbits.begin());
faiss::ResidualCoarseQuantizer rcq(rq.d, nbits);
// set the coarse quantizer from the 2 first quantizers
rcq.rq.initialize_from(rq);
rcq.is_trained = true;
rcq.ntotal = (idx_t)1 << rcq.rq.tot_bits;
// settings for exhaustive search in RCQ
rcq.centroid_norms.resize(rcq.ntotal);
rcq.aq->compute_centroid_norms(rcq.centroid_norms.data());
rcq.beam_factor = -1.0; // use exact search
size_t nlist = rcq.ntotal;
tic();
printf("RCQ nlist = %zd tot_bits=%zd\n", nlist, rcq.rq.tot_bits);
// build a IVFResidualQuantizer from that
faiss::IndexIVFResidualQuantizer index(
&rcq, rcq.d, nlist, rq.nbits, faiss::METRIC_L2, rq.search_type);
index.by_residual = false;
index.rq = rq;
index.is_trained = true;
// there are 3 ways of filling up the index...
for (std::string filled_with : {"add", "manual", "derived"}) {
tic();
printf("filling up the index with %s, code_size=%zd\n",
filled_with.c_str(),
index.code_size);
index.reset();
if (filled_with == "add") {
// standard add method
index.add(nb, xb);
} else if (filled_with == "manual") {
// compute inverted lists and add elements manually
// fill in the inverted index manually
faiss::InvertedLists& invlists = *index.invlists;
// assign vectors to inverted lists
std::vector<idx_t> listnos(nb);
std::vector<float> unused(nb);
rcq.search(nb, xb, 1, unused.data(), listnos.data());
// populate inverted lists
for (idx_t i = 0; i < nb; i++) {
invlists.add_entry(
listnos[i], i, &raw_codes[i * code_size]);
}
index.ntotal = nb;
} else if (filled_with == "derived") {
// Since we have the raw codes precomputed, their prefix is the
// inverted list index, so let's use that.
faiss::InvertedLists& invlists = *index.invlists;
// populate inverted lists
for (idx_t i = 0; i < nb; i++) {
const uint8_t* code = &raw_codes[i * code_size];
faiss::BitstringReader rd(code, code_size);
idx_t list_no =
rd.read(rcq.rq.tot_bits); // read the list number
invlists.add_entry(list_no, i, code);
}
index.ntotal = nb;
}
tic();
printf("Index filled in\n");
for (int nprobe : {1, 4, 16, 64, int(nlist)}) {
printf("setting nprobe=%-4d", nprobe);
index.nprobe = nprobe;
std::vector<float> D(k * nq);
std::vector<idx_t> I(k * nq);
index.search(nq, xq, k, D.data(), I.data());
tic();
printf("Accuracy (intersection @ %zd): %.3f\n",
k,
accuracy(I.data()));
}
}
}
/****************************************************************
* Make an IVF index that uses the first 2 levels as a coarse
* quantizer, but this time does not store the code prefix from the index
****************************************************************/
{
// build a coarse quantizer from the 2 first levels of the RQ
int nlevel = 2;
std::unique_ptr<faiss::IndexIVFResidualQuantizer> index(
faiss::ivflib::ivf_residual_from_quantizer(rq, nlevel));
// there are 2 ways of filling up the index...
for (std::string filled_with : {"add", "derived"}) {
tic();
printf("filling up the IVF index with %s, code_size=%zd\n",
filled_with.c_str(),
index->code_size);
index->reset();
if (filled_with == "add") {
// standard add method
index->add(nb, xb);
} else if (filled_with == "derived") {
faiss::ivflib::ivf_residual_add_from_flat_codes(
index.get(), nb, raw_codes.data(), rq.code_size);
}
tic();
printf("Index filled in\n");
for (int nprobe : {1, 4, 16, 64, int(index->nlist)}) {
printf("setting nprobe=%-4d", nprobe);
index->nprobe = nprobe;
std::vector<float> D(k * nq);
std::vector<idx_t> I(k * nq);
index->search(nq, xq, k, D.data(), I.data());
tic();
printf("Accuracy (intersection @ %zd): %.3f\n",
k,
accuracy(I.data()));
}
}
}
return 0;
}
|