1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
|
#!/usr/bin/env -S grimaldi --kernel bento_kernel_faiss
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
# fmt: off
# flake8: noqa
""":md
# Serializing codes separately, with IndexLSH and IndexPQ
Let's say, for example, you have a few vector embeddings per user
and want to shard a flat index by user so you can re-use the same LSH or PQ method
for all users but store each user's codes independently.
"""
""":py"""
import faiss
import numpy as np
""":py"""
d = 768
n = 1_000
ids = np.arange(n).astype('int64')
training_data = np.random.rand(n, d).astype('float32')
""":py"""
def read_ids_codes():
try:
return np.load("/tmp/ids.npy"), np.load("/tmp/codes.npy")
except FileNotFoundError:
return None, None
def write_ids_codes(ids, codes):
np.save("/tmp/ids.npy", ids)
np.save("/tmp/codes.npy", codes.reshape(len(ids), -1))
def write_template_index(template_index):
faiss.write_index(template_index, "/tmp/template.index")
def read_template_index_instance():
return faiss.read_index("/tmp/template.index")
""":md
## IndexLSH: separate codes
The first half of this notebook demonstrates how to store LSH codes. Unlike PQ, LSH does not require training. In fact, it's compression method, a random projections matrix, is deterministic on construction based on a random seed value that's [hardcoded](https://github.com/facebookresearch/faiss/blob/2c961cc308ade8a85b3aa10a550728ce3387f625/faiss/IndexLSH.cpp#L35).
"""
""":py"""
nbits = 1536
""":py"""
# demonstrating encoding is deterministic
codes = []
database_vector_float32 = np.random.rand(1, d).astype(np.float32)
for i in range(10):
index = faiss.IndexIDMap2(faiss.IndexLSH(d, nbits))
code = index.index.sa_encode(database_vector_float32)
codes.append(code)
for i in range(1, 10):
assert np.array_equal(codes[0], codes[i])
""":py"""
# new database vector
ids, codes = read_ids_codes()
database_vector_id, database_vector_float32 = max(ids) + 1 if ids is not None else 1, np.random.rand(1, d).astype(np.float32)
index = faiss.IndexIDMap2(faiss.IndexLSH(d, nbits))
code = index.index.sa_encode(database_vector_float32)
if ids is not None and codes is not None:
ids = np.concatenate((ids, [database_vector_id]))
codes = np.vstack((codes, code))
else:
ids = np.array([database_vector_id])
codes = np.array([code])
write_ids_codes(ids, codes)
""":py '2840581589434841'"""
# then at query time
query_vector_float32 = np.random.rand(1, d).astype(np.float32)
index = faiss.IndexIDMap2(faiss.IndexLSH(d, nbits))
ids, codes = read_ids_codes()
index.add_sa_codes(codes, ids)
index.search(query_vector_float32, k=5)
""":py"""
!rm /tmp/ids.npy /tmp/codes.npy
""":md
## IndexPQ: separate codes from codebook
The second half of this notebook demonstrates how to separate serializing and deserializing the PQ codebook
(via faiss.write_index for IndexPQ) independently of the vector codes. For example, in the case
where you have a few vector embeddings per user and want to shard the flat index by user you
can re-use the same PQ method for all users but store each user's codes independently.
"""
""":py"""
M = d//8
nbits = 8
""":py"""
# at train time
template_index = faiss.index_factory(d, f"IDMap2,PQ{M}x{nbits}")
template_index.train(training_data)
write_template_index(template_index)
""":py"""
# New database vector
index = read_template_index_instance()
ids, codes = read_ids_codes()
database_vector_id, database_vector_float32 = max(ids) + 1 if ids is not None else 1, np.random.rand(1, d).astype(np.float32)
code = index.index.sa_encode(database_vector_float32)
if ids is not None and codes is not None:
ids = np.concatenate((ids, [database_vector_id]))
codes = np.vstack((codes, code))
else:
ids = np.array([database_vector_id])
codes = np.array([code])
write_ids_codes(ids, codes)
""":py '1858280061369209'"""
# then at query time
query_vector_float32 = np.random.rand(1, d).astype(np.float32)
id_wrapper_index = read_template_index_instance()
ids, codes = read_ids_codes()
id_wrapper_index.add_sa_codes(codes, ids)
id_wrapper_index.search(query_vector_float32, k=5)
""":py"""
!rm /tmp/ids.npy /tmp/codes.npy /tmp/template.index
""":md
## Comparing these methods
- methods: Flat, LSH, PQ
- vary cost: nbits, M for 1x, 2x, 4x, 8x, 16x, 32x compression
- measure: recall@1
We don't measure latency as the number of vectors per user shard is insignificant.
"""
""":py '2898032417027201'"""
n, d
""":py"""
database_vector_ids, database_vector_float32s = np.arange(n), np.random.rand(n, d).astype(np.float32)
query_vector_float32s = np.random.rand(n, d).astype(np.float32)
""":py"""
index = faiss.index_factory(d, "IDMap2,Flat")
index.add_with_ids(database_vector_float32s, database_vector_ids)
_, ground_truth_result_ids= index.search(query_vector_float32s, k=1)
""":py '857475336204238'"""
from dataclasses import dataclass
pq_m_nbits = (
# 96 bytes
(96, 8),
(192, 4),
# 192 bytes
(192, 8),
(384, 4),
# 384 bytes
(384, 8),
(768, 4),
)
lsh_nbits = (768, 1536, 3072, 6144, 12288, 24576)
@dataclass
class Record:
type_: str
index: faiss.Index
args: tuple
recall: float
results = []
for m, nbits in pq_m_nbits:
print("pq", m, nbits)
index = faiss.index_factory(d, f"IDMap2,PQ{m}x{nbits}")
index.train(training_data)
index.add_with_ids(database_vector_float32s, database_vector_ids)
_, result_ids = index.search(query_vector_float32s, k=1)
recall = sum(result_ids == ground_truth_result_ids)
results.append(Record("pq", index, (m, nbits), recall))
for nbits in lsh_nbits:
print("lsh", nbits)
index = faiss.IndexIDMap2(faiss.IndexLSH(d, nbits))
index.add_with_ids(database_vector_float32s, database_vector_ids)
_, result_ids = index.search(query_vector_float32s, k=1)
recall = sum(result_ids == ground_truth_result_ids)
results.append(Record("lsh", index, (nbits,), recall))
""":py '556918346720794'"""
import matplotlib.pyplot as plt
import numpy as np
def create_grouped_bar_chart(x_values, y_values_list, labels_list, xlabel, ylabel, title):
num_bars_per_group = len(x_values)
plt.figure(figsize=(12, 6))
for x, y_values, labels in zip(x_values, y_values_list, labels_list):
num_bars = len(y_values)
bar_width = 0.08 * x
bar_positions = np.arange(num_bars) * bar_width - (num_bars - 1) * bar_width / 2 + x
bars = plt.bar(bar_positions, y_values, width=bar_width)
for bar, label in zip(bars, labels):
height = bar.get_height()
plt.annotate(
label,
xy=(bar.get_x() + bar.get_width() / 2, height),
xytext=(0, 3),
textcoords="offset points",
ha='center', va='bottom'
)
plt.xscale('log')
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.title(title)
plt.xticks(x_values, labels=[str(x) for x in x_values])
plt.tight_layout()
plt.show()
# # Example usage:
# x_values = [1, 2, 4, 8, 16, 32]
# y_values_list = [
# [2.5, 3.6, 1.8],
# [3.0, 2.8],
# [2.5, 3.5, 4.0, 1.0],
# [4.2],
# [3.0, 5.5, 2.2],
# [6.0, 4.5]
# ]
# labels_list = [
# ['A1', 'B1', 'C1'],
# ['A2', 'B2'],
# ['A3', 'B3', 'C3', 'D3'],
# ['A4'],
# ['A5', 'B5', 'C5'],
# ['A6', 'B6']
# ]
# create_grouped_bar_chart(x_values, y_values_list, labels_list, "x axis", "y axis", "title")
""":py '1630106834206134'"""
# x-axis: compression ratio
# y-axis: recall@1
from collections import defaultdict
x = defaultdict(list)
x[1].append(("flat", 1.00))
for r in results:
y_value = r.recall[0] / n
x_value = int(d * 4 / r.index.sa_code_size())
label = None
if r.type_ == "pq":
label = f"PQ{r.args[0]}x{r.args[1]}"
if r.type_ == "lsh":
label = f"LSH{r.args[0]}"
x[x_value].append((label, y_value))
x_values = sorted(list(x.keys()))
create_grouped_bar_chart(
x_values,
[[e[1] for e in x[x_value]] for x_value in x_values],
[[e[0] for e in x[x_value]] for x_value in x_values],
"compression ratio",
"recall@1 q=1,000 queries",
"recall@1 for a database of n=1,000 d=768 vectors",
)
|