File: IndexNSG.cpp

package info (click to toggle)
faiss 1.13.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 9,228 kB
  • sloc: cpp: 91,727; python: 31,865; sh: 874; ansic: 425; makefile: 41
file content (315 lines) | stat: -rw-r--r-- 8,943 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
/*
 * Copyright (c) Meta Platforms, Inc. and affiliates.
 *
 * This source code is licensed under the MIT license found in the
 * LICENSE file in the root directory of this source tree.
 */

// -*- c++ -*-

#include <faiss/IndexNSG.h>

#include <cinttypes>
#include <memory>

#include <faiss/IndexFlat.h>
#include <faiss/IndexNNDescent.h>
#include <faiss/impl/AuxIndexStructures.h>
#include <faiss/impl/FaissAssert.h>
#include <faiss/utils/distances.h>

namespace faiss {

using namespace nsg;

/**************************************************************
 * IndexNSG implementation
 **************************************************************/

IndexNSG::IndexNSG(int d, int R, MetricType metric) : Index(d, metric), nsg(R) {
    nndescent_L = GK + 50;
}

IndexNSG::IndexNSG(Index* storage, int R)
        : Index(storage->d, storage->metric_type),
          nsg(R),
          storage(storage),
          build_type(1) {
    nndescent_L = GK + 50;
}

IndexNSG::~IndexNSG() {
    if (own_fields) {
        delete storage;
    }
}

void IndexNSG::train(idx_t n, const float* x) {
    FAISS_THROW_IF_NOT_MSG(
            storage,
            "Please use IndexNSGFlat (or variants) instead of IndexNSG directly");
    // nsg structure does not require training
    storage->train(n, x);
    is_trained = true;
}

void IndexNSG::search(
        idx_t n,
        const float* x,
        idx_t k,
        float* distances,
        idx_t* labels,
        const SearchParameters* params) const {
    FAISS_THROW_IF_NOT_MSG(
            !params, "search params not supported for this index");
    FAISS_THROW_IF_NOT_MSG(
            storage,
            "Please use IndexNSGFlat (or variants) instead of IndexNSG directly");

    int L = std::max(nsg.search_L, (int)k); // in case of search L = -1
    idx_t check_period = InterruptCallback::get_period_hint(d * L);

    for (idx_t i0 = 0; i0 < n; i0 += check_period) {
        idx_t i1 = std::min(i0 + check_period, n);

#pragma omp parallel
        {
            VisitedTable vt(ntotal);

            std::unique_ptr<DistanceComputer> dis(
                    storage_distance_computer(storage));

#pragma omp for
            for (idx_t i = i0; i < i1; i++) {
                idx_t* idxi = labels + i * k;
                float* simi = distances + i * k;
                dis->set_query(x + i * d);

                nsg.search(*dis, k, idxi, simi, vt);

                vt.advance();
            }
        }
        InterruptCallback::check();
    }

    if (is_similarity_metric(metric_type)) {
        // we need to revert the negated distances
        for (size_t i = 0; i < k * n; i++) {
            distances[i] = -distances[i];
        }
    }
}

void IndexNSG::build(idx_t n, const float* x, idx_t* knn_graph, int gk) {
    FAISS_THROW_IF_NOT_MSG(
            storage,
            "Please use IndexNSGFlat (or variants) instead of IndexNSG directly");
    FAISS_THROW_IF_NOT_MSG(
            !is_built && ntotal == 0, "The IndexNSG is already built");

    storage->add(n, x);
    ntotal = storage->ntotal;

    // check the knn graph
    check_knn_graph(knn_graph, n, gk);

    const nsg::Graph<idx_t> knng(knn_graph, n, gk);
    nsg.build(storage, n, knng, verbose);
    is_built = true;
}

void IndexNSG::add(idx_t n, const float* x) {
    FAISS_THROW_IF_NOT_MSG(
            storage,
            "Please use IndexNSGFlat (or variants) "
            "instead of IndexNSG directly");
    FAISS_THROW_IF_NOT(is_trained);

    FAISS_THROW_IF_NOT_MSG(
            !is_built && ntotal == 0,
            "NSG does not support incremental addition");

    std::vector<idx_t> knng;
    if (verbose) {
        printf("IndexNSG::add %zd vectors\n", size_t(n));
    }

    if (build_type == 0) { // build with brute force search

        if (verbose) {
            printf("  Build knn graph with brute force search on storage index\n");
        }

        storage->add(n, x);
        ntotal = storage->ntotal;
        FAISS_THROW_IF_NOT(ntotal == n);

        knng.resize(ntotal * (GK + 1));
        storage->assign(ntotal, x, knng.data(), GK + 1);

        // Remove itself
        // - For metric distance, we just need to remove the first neighbor
        // - But for non-metric, e.g. inner product, we need to check
        // - each neighbor
        if (storage->metric_type == METRIC_INNER_PRODUCT) {
            for (idx_t i = 0; i < ntotal; i++) {
                int count = 0;
                for (int j = 0; j < GK + 1; j++) {
                    idx_t id = knng[i * (GK + 1) + j];
                    if (id != i) {
                        knng[i * GK + count] = id;
                        count += 1;
                    }
                    if (count == GK) {
                        break;
                    }
                }
            }
        } else {
            for (idx_t i = 0; i < ntotal; i++) {
                memmove(knng.data() + i * GK,
                        knng.data() + i * (GK + 1) + 1,
                        GK * sizeof(idx_t));
            }
        }

    } else if (build_type == 1) { // build with NNDescent
        IndexNNDescent index(storage, GK);
        index.nndescent.S = nndescent_S;
        index.nndescent.R = nndescent_R;
        index.nndescent.L = std::max(nndescent_L, GK + 50);
        index.nndescent.iter = nndescent_iter;
        index.verbose = verbose;

        if (verbose) {
            printf("  Build knn graph with NNdescent S=%d R=%d L=%d niter=%d\n",
                   index.nndescent.S,
                   index.nndescent.R,
                   index.nndescent.L,
                   index.nndescent.iter);
        }

        // prevent IndexNSG from deleting the storage
        index.own_fields = false;

        index.add(n, x);

        // storage->add is already implicit called in IndexNSG.add
        ntotal = storage->ntotal;
        FAISS_THROW_IF_NOT(ntotal == n);

        knng.resize(ntotal * GK);

        // cast from idx_t to int
        const int* knn_graph = index.nndescent.final_graph.data();
#pragma omp parallel for
        for (idx_t i = 0; i < ntotal * GK; i++) {
            knng[i] = knn_graph[i];
        }
    } else {
        FAISS_THROW_MSG("build_type should be 0 or 1");
    }

    if (verbose) {
        printf("  Check the knn graph\n");
    }

    // check the knn graph
    check_knn_graph(knng.data(), n, GK);

    if (verbose) {
        printf("  nsg building\n");
    }

    const nsg::Graph<idx_t> knn_graph(knng.data(), n, GK);
    nsg.build(storage, n, knn_graph, verbose);
    is_built = true;
}

void IndexNSG::reset() {
    nsg.reset();
    storage->reset();
    ntotal = 0;
    is_built = false;
}

void IndexNSG::reconstruct(idx_t key, float* recons) const {
    storage->reconstruct(key, recons);
}

void IndexNSG::check_knn_graph(const idx_t* knn_graph, idx_t n, int K) const {
    idx_t total_count = 0;

#pragma omp parallel for reduction(+ : total_count)
    for (idx_t i = 0; i < n; i++) {
        int count = 0;
        for (int j = 0; j < K; j++) {
            idx_t id = knn_graph[i * K + j];
            if (id < 0 || id >= n || id == i) {
                count += 1;
            }
        }
        total_count += count;
    }

    if (total_count > 0) {
        fprintf(stderr,
                "WARNING: the input knn graph "
                "has %" PRId64 " invalid entries\n",
                total_count);
    }
    FAISS_THROW_IF_NOT_MSG(
            total_count < n / 10,
            "There are too many invalid entries in the knn graph. "
            "It may be an invalid knn graph.");
}

/**************************************************************
 * IndexNSGFlat implementation
 **************************************************************/

IndexNSGFlat::IndexNSGFlat() {
    is_trained = true;
}

IndexNSGFlat::IndexNSGFlat(int d, int R, MetricType metric)
        : IndexNSG(new IndexFlat(d, metric), R) {
    own_fields = true;
    is_trained = true;
}

/**************************************************************
 * IndexNSGPQ implementation
 **************************************************************/

IndexNSGPQ::IndexNSGPQ() = default;

IndexNSGPQ::IndexNSGPQ(int d, int pq_m, int M, int pq_nbits)
        : IndexNSG(new IndexPQ(d, pq_m, pq_nbits), M) {
    own_fields = true;
    is_trained = false;
}

void IndexNSGPQ::train(idx_t n, const float* x) {
    IndexNSG::train(n, x);
    (dynamic_cast<IndexPQ*>(storage))->pq.compute_sdc_table();
}

/**************************************************************
 * IndexNSGSQ implementation
 **************************************************************/

IndexNSGSQ::IndexNSGSQ(
        int d,
        ScalarQuantizer::QuantizerType qtype,
        int M,
        MetricType metric)
        : IndexNSG(new IndexScalarQuantizer(d, qtype, metric), M) {
    is_trained = this->storage->is_trained;
    own_fields = true;
}

IndexNSGSQ::IndexNSGSQ() = default;

} // namespace faiss