1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <faiss/IndexRaBitQ.h>
#include <faiss/impl/FaissAssert.h>
#include <faiss/impl/ResultHandler.h>
#include <memory>
namespace faiss {
// Forward declaration from RaBitQuantizer.cpp
struct RaBitQDistanceComputer;
IndexRaBitQ::IndexRaBitQ() = default;
IndexRaBitQ::IndexRaBitQ(idx_t d, MetricType metric, uint8_t nb_bits_in)
: IndexFlatCodes(0, d, metric), rabitq(d, metric, nb_bits_in) {
// Update code size based on nb_bits
code_size = rabitq.code_size;
is_trained = false;
}
void IndexRaBitQ::train(idx_t n, const float* x) {
// compute a centroid
std::vector<float> centroid(d, 0);
for (size_t i = 0; i < n; i++) {
for (size_t j = 0; j < d; j++) {
centroid[j] += x[i * d + j];
}
}
if (n != 0) {
for (size_t j = 0; j < d; j++) {
centroid[j] /= (float)n;
}
}
center = std::move(centroid);
//
rabitq.train(n, x);
is_trained = true;
}
void IndexRaBitQ::sa_encode(idx_t n, const float* x, uint8_t* bytes) const {
FAISS_THROW_IF_NOT(is_trained);
rabitq.compute_codes_core(x, bytes, n, center.data());
}
void IndexRaBitQ::sa_decode(idx_t n, const uint8_t* bytes, float* x) const {
FAISS_THROW_IF_NOT(is_trained);
rabitq.decode_core(bytes, x, n, center.data());
}
FlatCodesDistanceComputer* IndexRaBitQ::get_FlatCodesDistanceComputer() const {
FlatCodesDistanceComputer* dc =
rabitq.get_distance_computer(qb, center.data(), centered);
dc->code_size = rabitq.code_size;
dc->codes = codes.data();
return dc;
}
FlatCodesDistanceComputer* IndexRaBitQ::get_quantized_distance_computer(
const uint8_t qb,
bool centered) const {
FlatCodesDistanceComputer* dc =
rabitq.get_distance_computer(qb, center.data(), centered);
dc->code_size = rabitq.code_size;
dc->codes = codes.data();
return dc;
}
namespace {
struct Run_search_with_dc_res {
using T = void;
uint8_t qb = 0;
bool centered = false;
uint8_t nb_bits = 1; // Number of bits per dimension
template <class BlockResultHandler>
void f(BlockResultHandler& res, const IndexRaBitQ* index, const float* xq) {
size_t ntotal = index->ntotal;
using SingleResultHandler =
typename BlockResultHandler::SingleResultHandler;
const int d = index->d;
size_t ex_bits = nb_bits - 1;
#pragma omp parallel
{
std::unique_ptr<FlatCodesDistanceComputer> dc_base(
index->get_quantized_distance_computer(qb, centered));
SingleResultHandler resi(res);
#pragma omp for
for (int64_t q = 0; q < res.nq; q++) {
resi.begin(q);
dc_base->set_query(xq + d * q);
// Stats tracking for multi-bit two-stage search only
// n_1bit_evaluations: candidates evaluated using 1-bit lower
// bound n_multibit_evaluations: candidates requiring full
// multi-bit distance
size_t local_1bit_evaluations = 0;
size_t local_multibit_evaluations = 0;
if (ex_bits == 0) {
// 1-bit: Standard single-stage search (no stats tracking)
for (size_t i = 0; i < ntotal; i++) {
if (res.is_in_selection(i)) {
float dis = (*dc_base)(i);
resi.add_result(dis, i);
}
}
} else {
// Multi-bit: Two-stage search with adaptive filtering
// Note: Even with query quantization (qb > 0), ex-bits
// distance computation uses the float query to maintain
// consistency with encoding-time factor computation. See
// RaBitQuantizer.cpp for details.
auto* dc = dynamic_cast<RaBitQDistanceComputer*>(
dc_base.get());
FAISS_THROW_IF_NOT_MSG(
dc != nullptr,
"Failed to cast to RaBitQDistanceComputer for two-stage search");
// Use appropriate comparison based on metric type
bool is_similarity =
is_similarity_metric(index->metric_type);
for (size_t i = 0; i < ntotal; i++) {
if (res.is_in_selection(i)) {
const uint8_t* code =
index->codes.data() + i * index->code_size;
local_1bit_evaluations++;
// Stage 1: Compute 1-bit lower bound
float lower_bound = dc->lower_bound_distance(code);
// Stage 2: Adaptive filtering using threshold
// For L2 (min-heap): filter if lower_bound <
// resi.threshold For IP (max-heap): filter if
// lower_bound > resi.threshold Note: Using
// resi.threshold directly (not cached) enables more
// aggressive filtering as the heap is updated
bool should_refine = is_similarity
? (lower_bound > resi.threshold)
: (lower_bound < resi.threshold);
if (should_refine) {
local_multibit_evaluations++;
// Compute full multi-bit distance
float dist_full =
dc->distance_to_code_full(code);
resi.add_result(dist_full, i);
}
}
}
}
// Update global stats atomically
#pragma omp atomic
rabitq_stats.n_1bit_evaluations += local_1bit_evaluations;
#pragma omp atomic
rabitq_stats.n_multibit_evaluations +=
local_multibit_evaluations;
resi.end();
}
}
}
};
} // namespace
void IndexRaBitQ::search(
idx_t n,
const float* x,
idx_t k,
float* distances,
idx_t* labels,
const SearchParameters* params_in) const {
FAISS_THROW_IF_NOT(is_trained);
// Extract search parameters
uint8_t used_qb = qb;
bool used_centered = centered;
if (auto params = dynamic_cast<const RaBitQSearchParameters*>(params_in)) {
used_qb = params->qb;
used_centered = params->centered;
}
const IDSelector* sel = (params_in != nullptr) ? params_in->sel : nullptr;
// Set up functor with all necessary parameters
Run_search_with_dc_res r;
r.qb = used_qb;
r.centered = used_centered;
r.nb_bits = rabitq.nb_bits; // Pass multi-bit info to functor
// Use Faiss framework for all cases (single-stage and two-stage)
dispatch_knn_ResultHandler(
n, distances, labels, k, metric_type, sel, r, this, x);
}
void IndexRaBitQ::range_search(
idx_t n,
const float* x,
float radius,
RangeSearchResult* result,
const SearchParameters* params_in) const {
uint8_t used_qb = qb;
if (auto params = dynamic_cast<const RaBitQSearchParameters*>(params_in)) {
used_qb = params->qb;
}
const IDSelector* sel = (params_in != nullptr) ? params_in->sel : nullptr;
Run_search_with_dc_res r;
r.qb = used_qb;
dispatch_range_ResultHandler(result, radius, metric_type, sel, r, this, x);
}
} // namespace faiss
|