1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
|
# Portions Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
# Portions Copyright 2025 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import numpy as np
import faiss # make faiss available
d = 64 # dimension
nb = 100000 # database size
nq = 10000 # nb of queries
np.random.seed(1234) # make reproducible
xb = np.random.random((nb, d)).astype('float32')
xb[:, 0] += np.arange(nb) / 1000.
xq = np.random.random((nq, d)).astype('float32')
xq[:, 0] += np.arange(nq) / 1000.
index = faiss.IndexSVSVamana(d, 64) # build the index (DynamicVamana, float32)
print(index.is_trained)
index.add(xb) # add vectors to the index
print(index.ntotal)
k = 4 # we want to see 4 nearest neighbors
print(f"{k} nearest neighbors of the first 5 vectors")
D, I = index.search(xb[:5], k) # sanity check
print(I)
print(D)
D, I = index.search(xq, k) # actual search
print(f"{k} nearest neighbors of the 5 first query vectors")
print(I[:5]) # neighbors of the 5 first queries
print(f"{k} nearest neighbors of the 5 last query vectors")
print(I[-5:]) # neighbors of the 5 last queries
faiss.write_index(index, "index.faiss")
reloaded = faiss.read_index("index.faiss")
D, I = reloaded.search(xq, k) # search with the reloaded
print(f"{k} nearest neighbors of the 5 first query vectors (after reloading)")
print(I[:5]) # neighbors of the 5 first queries
print(f"{k} nearest neighbors of the 5 last query vectors (after reloading)")
print(I[-5:]) # neighbors of the 5 last queries
flat_idx_fac = faiss.index_factory(d, 'SVSFlat', faiss.METRIC_L2) # example of using factory for SVS Flat
flat_idx_fac.add(xb)
flat_idx_fac.search(xq, k)
uncompressed_idx_fac = faiss.index_factory(d, 'SVSVamana64', faiss.METRIC_L2) # example of using factory for SVS Vamana uncompressed
uncompressed_idx_fac.add(xb)
uncompressed_idx_fac.search(xq, k)
lvq_idx = faiss.IndexSVSVamanaLVQ(d, 32, faiss.METRIC_L2, faiss.SVS_LVQ4x8) # example of using SVS Vamana LVQ
lvq_idx_fac_2 = faiss.index_factory(d, 'SVSVamana32,LVQ4x4', faiss.METRIC_L2) # example of using factory for SVS Vamana LVQ
lvq_idx_fac_2.add(xb)
lvq_idx_fac_2.search(xq, k)
leanvec_idx = faiss.IndexSVSVamanaLeanVec(d, 32, faiss.METRIC_L2, 0, faiss.SVS_LeanVec4x4) # example of using SVS Vamana LeanVec
leanvec_idx_fac = faiss.index_factory(d, 'SVSVamana32,LeanVec4x4', faiss.METRIC_L2) # example of using factory for SVS Vamana LeanVec
leanvec_idx_fac.train(xb)
leanvec_idx_fac.add(xb)
leanvec_idx_fac.search(xq, k)
leanvec_idx_fac2 = faiss.index_factory(d, 'SVSVamana64,LeanVec4x4_16', faiss.METRIC_L2) # example of using factory for SVS Vamana LeanVec. leanvec_dims is 16
leanvec_idx_fac2.train(xb)
leanvec_idx_fac2.add(xb)
leanvec_idx_fac2.search(xq, k)
|