File: 11-SVS.py

package info (click to toggle)
faiss 1.13.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 9,228 kB
  • sloc: cpp: 91,727; python: 31,865; sh: 874; ansic: 425; makefile: 41
file content (83 lines) | stat: -rw-r--r-- 3,618 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# Portions Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

# Portions Copyright 2025 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import numpy as np
import faiss                     # make faiss available

d = 64                           # dimension
nb = 100000                      # database size
nq = 10000                       # nb of queries
np.random.seed(1234)             # make reproducible
xb = np.random.random((nb, d)).astype('float32')
xb[:, 0] += np.arange(nb) / 1000.
xq = np.random.random((nq, d)).astype('float32')
xq[:, 0] += np.arange(nq) / 1000.

index = faiss.IndexSVSVamana(d, 64) # build the index (DynamicVamana, float32)

print(index.is_trained)
index.add(xb)                  # add vectors to the index
print(index.ntotal)

k = 4                          # we want to see 4 nearest neighbors

print(f"{k} nearest neighbors of the first 5 vectors")
D, I = index.search(xb[:5], k) # sanity check
print(I)
print(D)
D, I = index.search(xq, k)     # actual search
print(f"{k} nearest neighbors of the 5 first query vectors")
print(I[:5])                   # neighbors of the 5 first queries
print(f"{k} nearest neighbors of the 5 last query vectors")
print(I[-5:])                  # neighbors of the 5 last queries

faiss.write_index(index, "index.faiss")
reloaded = faiss.read_index("index.faiss")

D, I = reloaded.search(xq, k)  # search with the reloaded
print(f"{k} nearest neighbors of the 5 first query vectors (after reloading)")
print(I[:5])                   # neighbors of the 5 first queries
print(f"{k} nearest neighbors of the 5 last query vectors (after reloading)")
print(I[-5:])                  # neighbors of the 5 last queries

flat_idx_fac = faiss.index_factory(d, 'SVSFlat', faiss.METRIC_L2)                       # example of using factory for SVS Flat
flat_idx_fac.add(xb)
flat_idx_fac.search(xq, k)

uncompressed_idx_fac = faiss.index_factory(d, 'SVSVamana64', faiss.METRIC_L2)           # example of using factory for SVS Vamana uncompressed
uncompressed_idx_fac.add(xb)
uncompressed_idx_fac.search(xq, k)

lvq_idx = faiss.IndexSVSVamanaLVQ(d, 32, faiss.METRIC_L2, faiss.SVS_LVQ4x8)                     # example of using SVS Vamana LVQ
lvq_idx_fac_2 = faiss.index_factory(d, 'SVSVamana32,LVQ4x4', faiss.METRIC_L2)           # example of using factory for SVS Vamana LVQ
lvq_idx_fac_2.add(xb)
lvq_idx_fac_2.search(xq, k)


leanvec_idx = faiss.IndexSVSVamanaLeanVec(d, 32, faiss.METRIC_L2, 0, faiss.SVS_LeanVec4x4)      # example of using SVS Vamana LeanVec
leanvec_idx_fac = faiss.index_factory(d, 'SVSVamana32,LeanVec4x4', faiss.METRIC_L2)     # example of using factory for SVS Vamana LeanVec
leanvec_idx_fac.train(xb)
leanvec_idx_fac.add(xb)
leanvec_idx_fac.search(xq, k)

leanvec_idx_fac2 = faiss.index_factory(d, 'SVSVamana64,LeanVec4x4_16', faiss.METRIC_L2) # example of using factory for SVS Vamana LeanVec. leanvec_dims is 16
leanvec_idx_fac2.train(xb)
leanvec_idx_fac2.add(xb)
leanvec_idx_fac2.search(xq, k)