File: genericmap.cpp

package info (click to toggle)
falconpl 0.9.6.9-git20120606-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 46,176 kB
  • sloc: cpp: 181,389; ansic: 109,025; yacc: 2,310; xml: 1,218; sh: 403; objc: 245; makefile: 82; sql: 20
file content (1116 lines) | stat: -rw-r--r-- 29,825 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
 /*
   FALCON - The Falcon Programming Language.
   FILE: genericmap.cpp

   Generic map - a map holding generic values.
   -------------------------------------------------------------------
   Author: Giancarlo Niccolai
   Begin: lun ago 23 21:55:38 CEST 2004


   -------------------------------------------------------------------
   (C) Copyright 2004: the FALCON developers (see list in AUTHORS file)

   See LICENSE file for licensing details.
*/


#include <falcon/genericmap.h>
#include <falcon/memory.h>
#include <falcon/string.h>
#include <falcon/fassert.h>

#include <string.h>

#define PLAT_ALIGN 4

namespace Falcon
{

Map::Map( ElementTraits *keyt, ElementTraits *valuet, uint16 order ):
      m_keyTraits( keyt ),
      m_valueTraits( valuet ),
      m_treeOrder( order ),
      m_size(0),
      m_treeTop(0)
{
   if ( order % 2 == 0 )
      m_treeOrder = order + 1;

   // pre-cache key and value sizes
   m_keySize = keyt->memSize();

   // force 4bytes alignment
   if ( m_keySize % PLAT_ALIGN != 0 )
   {
      m_keySize = ((m_keySize / PLAT_ALIGN ) + 1) * PLAT_ALIGN;
   }

   m_valueSize = valuet->memSize();
   // force 4bytes alignment
   if ( m_valueSize % PLAT_ALIGN != 0 )
   {
      m_valueSize = ((m_valueSize / PLAT_ALIGN) + 1) * PLAT_ALIGN;
   }

   // create the first page.
   m_treeTop = allocPage();
}

Map::~Map()
{
   if ( m_treeTop != 0 )
   {
      destroyPage( m_treeTop );
      m_treeTop = 0;
   }
   else {
      throw "Double destruction";
   }
}

//======================================
//

MAP_PAGE *Map::allocPage() const
{
   fassert( sizeof(MAP_PAGE) % 4 == 0 );

   uint32 sz = (m_keySize + m_valueSize + sizeof( MAP_PAGE * ) ) * m_treeOrder + sizeof( MAP_PAGE );

   MAP_PAGE *page = (MAP_PAGE *) memAlloc( sz );
   page->m_count = 0;
   page->m_parent = 0;
   page->m_higher = 0;
   page->m_allocated = 0;
   page->m_dummy = 0;
   page->m_parentElement = 0;

   return page;
}

MAP_PAGE **Map::ptrsOfPage( const MAP_PAGE *ptr ) const
{
   char *page = (char *) ptr;
   return (MAP_PAGE **) ( page + sizeof( MAP_PAGE ) );
}

void *Map::keysOfPage( const MAP_PAGE *ptr ) const
{
   char *page = (char *) ptr;
   return page + sizeof( MAP_PAGE ) + ( m_treeOrder * sizeof( MAP_PAGE * ) );
}

void *Map::valuesOfPage( const MAP_PAGE *ptr ) const
{
   char *page = (char *) ptr;
   return page + sizeof( MAP_PAGE ) + ( m_treeOrder * (sizeof( MAP_PAGE * ) + m_keySize ) );
}

MAP_PAGE *Map::ptrInPage( const MAP_PAGE *ptr, uint16 count ) const
{
   char *page = (char *) ptr;
   MAP_PAGE **pageVect = (MAP_PAGE **) ( page + sizeof( MAP_PAGE ) );
   return pageVect[count];
}

void *Map::keyInPage( const MAP_PAGE *ptr, uint16 count ) const
{
   char *page = (char *) ptr;
   page += sizeof( MAP_PAGE ) + ( m_treeOrder * sizeof( MAP_PAGE * ) );
   return page + (count * m_keySize);
}

void *Map::valueInPage( const MAP_PAGE *ptr, uint16 count ) const
{
   char *page = (char *) ptr;
   page += sizeof( MAP_PAGE ) + ( m_treeOrder * (sizeof( MAP_PAGE * ) + m_keySize ) );
   return page + (count * m_valueSize);
}


//======================================
//
void *Map::find( const void *key ) const
{
   MapIterator iter;
   if( find( key, iter ) )
      return iter.currentValue();
   return 0;
}

bool Map::find( const void *key, MapIterator &iter ) const
{
   iter.m_map = this;

   // if the top page has zero element, this is the find
   if( m_treeTop->m_count == 0 )
   {
      iter.m_pagePosition = 0;
      iter.m_page = m_treeTop;

      return false;
   }

   return subFind( key, iter, m_treeTop );
}


bool Map::subFind( const void *key, MapIterator &iter, MAP_PAGE *currentPage ) const
{
   register int count = currentPage->m_count;

   // By design, this page cannot have zero elements

   uint16 pos;
   bool found = scanPage( key, currentPage, count, pos );

   if ( found )
   {
      // FOUND!!!
      iter.m_pagePosition = pos;
      iter.m_page = currentPage;
      return true;
   }

   // greater than the greatest element?
   if( pos >= count )
   {
      // if there is a greater page, search there
      if ( currentPage->m_higher != 0 )
      {
         return subFind( key, iter, currentPage->m_higher );
      }

      // else, insert past last
      iter.m_pagePosition = count;
      iter.m_page = currentPage;
      return false;
   }

   // if the item has a smaller page, go there
   MAP_PAGE *page = ptrInPage( currentPage, pos );
   if ( page != 0 ) {
      return subFind( key, iter, page );
   }

   // we should insert in this position
   iter.m_pagePosition = pos;
   iter.m_page = currentPage;
   return false;
}



bool Map::scanPage( const void *key, MAP_PAGE *currentPage, uint16 higher, uint16 &ret_pos ) const
{
   // by design, higher can't be zero.
   register uint16 lower = 0, point;
   higher --;

   point = higher / 2;
   void *cfrKey;
   int cmp;

   while ( true )
   {
      // get the table element
      cfrKey = keyInPage( currentPage, point );
      cmp = m_keyTraits->compare( cfrKey, key );

      if( cmp == 0 ) {
         ret_pos = point;
         return true;
      }
      else
      {
         if ( lower == higher )  // not found
         {
            break;
         }
         // last try. In pair sized dictionaries, it can be also in the other node
         else if ( point == lower && point == higher - 1 )
         {
            // if it's lower than the lower, we must insert before the lower )
            if ( cmp > 0 )
            {
               ret_pos = point;
               return false;
            }

            // being integer math, ulPoint is rounded by defect and has
            // already looked at the ulLower position
            point = lower = higher;
            // try again
            continue;
         }

         if ( cmp < 0 )
         {
            lower = point;
         }
         else
         {
            higher = point;
         }
         point = ( lower + higher ) / 2;
      }
   }

   // entry not found, but signal the best match anyway
   ret_pos =  cmp < 0 ? higher + 1: higher;

   return false;
}

void Map::insertSpaceInPage( MAP_PAGE *page, uint16 pos )
{
   // by design, count in page cannot be greater than page order
   if( pos < page->m_count )
   {
      char *mp_pos = (char *) page;
      mp_pos += sizeof( MAP_PAGE ) + (sizeof( MAP_PAGE *) * pos);
      memmove( mp_pos + sizeof( MAP_PAGE * ), mp_pos, sizeof( MAP_PAGE *) * (page->m_count - pos ) );

      char *key_pos = (char *) keyInPage( page, pos );
      memmove( key_pos + m_keySize, key_pos, m_keySize * (page->m_count - pos ) );

      char *val_pos = (char *) valueInPage( page, pos );
      memmove( val_pos + m_valueSize, val_pos, m_valueSize * (page->m_count - pos ) );
   }
   page->m_count++;
}

void Map::removeSpaceFromPage( MAP_PAGE *page, uint16 pos )
{
   // The last element does not need refitting
   if( pos < page->m_count - 1 )
   {
      char *mp_pos = (char *) page;
      mp_pos += sizeof( MAP_PAGE ) + (sizeof( MAP_PAGE *) * pos);
      memmove( mp_pos, mp_pos + sizeof( MAP_PAGE *), sizeof( MAP_PAGE *) * (page->m_count - pos -1) );

      char *key_pos = (char *) keyInPage( page, pos );
      memmove( key_pos, key_pos + m_keySize, m_keySize * (page->m_count - pos -1) );

      char *val_pos = (char *) valueInPage( page, pos );
      memmove( val_pos, val_pos + m_valueSize, m_valueSize * (page->m_count - pos -1) );

      page->m_count --;

      if ( ptrInPage( page, pos ) != 0 )
      {
         while ( pos < page->m_count )
         {
            ptrInPage( page, pos )->m_parentElement = pos;
            ++pos;
         }
      }
   }
   else
      page->m_count --;
}

bool Map::insert( const void *key, const void *value )
{
   MapIterator iter;

   if ( find( key, iter ) )
   {
      m_valueTraits->destroy( iter.currentValue() );
      m_valueTraits->copy( iter.currentValue(), value );
      return false;
   }

   // fix page situation.
   insertSpaceInPage( iter.m_page, iter.m_pagePosition );

   // put data in space
   m_keyTraits->copy( iter.currentKey(), key );
   m_valueTraits->copy( iter.currentValue(), value );
   ptrsOfPage( iter.m_page )[ iter.m_pagePosition ] = 0;

   // as this is a leaf, no extra management is needed

   // signal we have an element more
   m_size++;

   // if the page is full, balance.
   if ( iter.m_page->m_count == m_treeOrder )
   {
      splitPage( iter.m_page );
   }

   return true;
}


bool Map::erase( const void *key )
{
   MapIterator iter;

   if ( find( key, iter ) )
   {
      erase( iter );
      return true;
   }

   return false;
}

MapIterator Map::erase( const MapIterator &iter )
{
   void *key = keyInPage( iter.m_page, iter.m_pagePosition );
   void *value = valueInPage( iter.m_page, iter.m_pagePosition );
   m_keyTraits->destroy( key );
   m_valueTraits->destroy( value );
   MAP_PAGE *child = ptrInPage( iter.m_page, iter.m_pagePosition );

	MapIterator retIter = iter;

   // if we have no children, we must shrink the page.
   if ( child == 0 )
   {
      removeSpaceFromPage( iter.m_page, iter.m_pagePosition );

      // if we are too small, we must re-balance the tree
      // but the tree-top is an exception
      if( iter.m_page->m_count < m_treeOrder / 2 && iter.m_page != m_treeTop )
      {
         rebalanceNode( iter.m_page, &retIter );
      }
   }
   else {
      // we'll promote the highest of our children to our position.
      MAP_PAGE *child_child = child->m_higher;

      // and promote one from each child up to the leaves.
      while( child_child != 0 )
      {
         child = child_child;
         child_child = child->m_higher;
      }
      child->m_count--;
      memcpy( key, keyInPage( child, child->m_count ), m_keySize );
      memcpy( value, valueInPage( child, child->m_count ), m_valueSize );

      // in case a leaf child is unbalanced, we'll start rebalance algorithm.
      if( child->m_count < m_treeOrder / 2 )
         rebalanceNode( child, &retIter );

   }

   m_size --;

   return retIter;
}



MAP_PAGE *Map::getLeftSibling( const MAP_PAGE *page ) const
{
   uint16 parentElem = page->m_parentElement;
   MAP_PAGE *parent = page->m_parent;

   // No parent, no sibling.
   if ( parent == 0 || parentElem == 0 )
      return 0;

   if ( parentElem >= parent->m_count )
      return ptrInPage( parent, parent->m_count - 1 );

   return ptrInPage( parent, parentElem - 1 );
}


MAP_PAGE *Map::getRightSibling( const MAP_PAGE *page ) const
{
   uint16 parentElem = page->m_parentElement;
   MAP_PAGE *parent = page->m_parent;

   // No parent, no sibling.
   if ( parent == 0 )
      return 0;

   // we are the higher; of course we don't have siblings.
   if ( parentElem >= parent->m_count )
      return 0;

   // ok, we have a sibling in the parent
   parentElem++;
   if( parentElem >= parent->m_count )
      return parent->m_higher;

   return ptrInPage( parent, parentElem );
}



void Map::reshapeChildPointers( MAP_PAGE *page, uint16 startFrom )
{
   while ( startFrom < page->m_count )
   {
      MAP_PAGE *child = ptrInPage( page, startFrom );
      child->m_parent = page;
      child->m_parentElement = startFrom;
      ++ startFrom;
   }
   page->m_higher->m_parentElement = m_treeOrder + 1;
   page->m_higher->m_parent = page;
}



void Map::rebalanceNode( MAP_PAGE *page, MapIterator *scanner )
{
   MAP_PAGE *left, *right;
   MAP_PAGE *parent;

   parent = page->m_parent;
   int limit = m_treeOrder / 2;
   // no rebalancing for the root
   if ( parent == 0 || page->m_count >= limit )
      return;

   // identify left sibling.
   left = getLeftSibling( page );
   right = getRightSibling( page );

   // nonroot element must have at least a sibling.
   fassert( left != 0 || right != 0 );

   // decide which has the larger count.
   if ( (right != 0 && right->m_count > limit ) && ( left == 0  || right->m_count > left->m_count ) )
   {
      // rotate right elements
      int elems = (right->m_count - limit) / 2;

      // move our parent here at limit position
      memcpy( keyInPage( page, page->m_count ), keyInPage( parent, page->m_parentElement), m_keySize );
      memcpy( valueInPage( page, page->m_count ), valueInPage( parent, page->m_parentElement), m_valueSize );

      // whose child is our higher
      ptrsOfPage(page)[ page->m_count ] = page->m_higher;

		// if the scanner was at our parent, move it to limit in this page

      // now move elems items from the page on the right.
		// elems may be zero if the other page is just limit + 1 items.
		if ( elems > 0 )
		{
			memcpy( keyInPage( page, page->m_count + 1), keyInPage( right, 0 ), m_keySize * elems );
			memcpy( valueInPage( page, page->m_count + 1 ), valueInPage( right, 0 ), m_valueSize * elems );
			memcpy( &ptrsOfPage(page)[ page->m_count + 1 ], &ptrsOfPage( right )[ 0 ] , sizeof( MAP_PAGE *) * elems );
		}

      // now rotate the elems item in place of our old parent; its' child are our new higher
      memcpy( keyInPage( parent, page->m_parentElement), keyInPage( right, elems ), m_keySize );
      memcpy( valueInPage( parent, page->m_parentElement), valueInPage( right, elems ), m_valueSize );
      page->m_higher = ptrInPage( right, elems );

      // set our new count
      page->m_count = page->m_count + elems + 1;

      // finally, shift left the right pages of elems + 1 items.
      elems ++;
      int rcount = right->m_count - elems;
      memmove( keyInPage( right, 0 ), keyInPage( right, elems ), m_keySize * rcount );
      memmove( valueInPage( right, 0), valueInPage( right, elems ), m_valueSize * rcount );
      memmove( ptrsOfPage( right ), &ptrsOfPage( right )[elems], sizeof( MAP_PAGE *) * rcount );
      right->m_count = rcount;

      // fix backpointers to changed pages.
      if ( ptrInPage( page, 0 ) != 0 )
      {
         reshapeChildPointers( page );
         reshapeChildPointers( right );
      }

		// if the scanner was in the moved elements, move it too
		if ( scanner != 0 )
		{
			if ( scanner->m_page == parent && scanner->m_pagePosition == page->m_parentElement )
			{
				scanner->m_page = page;
				scanner->m_pagePosition = limit;
			}
			else if ( scanner->m_page == right )
			{
				// elems has been grown
				if ( scanner->m_pagePosition == elems - 1)
				{
					scanner->m_page = parent;
					scanner->m_pagePosition = page->m_parentElement;
				}
				else if ( scanner->m_pagePosition < elems -1 ) {
					scanner->m_page = page;
					scanner->m_pagePosition = limit + 1 + scanner->m_pagePosition;
				}
				else {
					scanner->m_pagePosition -= elems;
				}
			}
		}

      return;
   }

   if ( left != 0 && left->m_count > limit )
   {
      // rotate left elements
      int elems = (left->m_count - limit) / 2;

      // shift this page elements on the right to make room (elems plus the rotated parent
      memmove( keyInPage( page, elems + 1 ), keyInPage( page, 0 ), m_keySize * page->m_count );
      memmove( valueInPage( page, elems + 1 ), valueInPage( page, 0 ), m_valueSize * page->m_count );
      memmove( &ptrsOfPage( page )[elems + 1], ptrsOfPage( page ), sizeof( MAP_PAGE *) * page->m_count );

      // move left page parent's to elems position.
      memcpy( keyInPage( page, elems ), keyInPage( parent, left->m_parentElement), m_keySize );
      memcpy( valueInPage( page, elems ), valueInPage( parent, left->m_parentElement), m_valueSize );

      // whose child left's higher
      ptrsOfPage(page)[elems] = left->m_higher;

      // now move elems items from the page on the left.
      int lcount = left->m_count - elems;

		// elems may be zero if the other page is just limit + 1 items.
		if ( elems > 0 )
		{
			memcpy( keyInPage( page, 0 ), keyInPage( left, lcount ), m_keySize * elems);
			memcpy( valueInPage( page, 0 ), valueInPage( left, lcount ), m_valueSize * elems );
			memcpy( ptrsOfPage(page), &ptrsOfPage( left )[lcount], sizeof( MAP_PAGE *) * elems );
		}

      // now rotate the elems item in place of left's old parent; its' child are left's higher
      lcount--;
      memcpy( keyInPage( parent, left->m_parentElement), keyInPage( left, lcount ), m_keySize );
      memcpy( valueInPage( parent, left->m_parentElement), valueInPage( left, lcount ), m_valueSize );
      left->m_higher = ptrInPage( left, lcount );

      // set our new count
      page->m_count +=  elems + 1;

      // finally, shift left the right pages of elems + 1 items.
      left->m_count = lcount;

      // fix backpointers to changed pages.
      if ( ptrInPage( page, 0 ) != 0 )
      {
         reshapeChildPointers( page );
         // only the higher is changed in the left page
         left->m_higher->m_parent = left;
         left->m_higher->m_parentElement = m_treeOrder;
      }

		// if the scanner was in the moved elements, move it too
		if ( scanner != 0 )
		{
			// if the scanner was at our parent, move it to limit in this page
			if ( scanner->m_page == parent && scanner->m_pagePosition == left->m_parentElement )
			{
				scanner->m_page = page;
				scanner->m_pagePosition = elems;
			}
			else if ( scanner->m_page == left )
			{
				// lcount has already been shrunk
				if ( scanner->m_pagePosition == lcount )
				{
					scanner->m_page = parent;
					scanner->m_pagePosition = left->m_parentElement;
				}
				else if ( scanner->m_pagePosition > lcount )
				{
					scanner->m_page = page;
					scanner->m_pagePosition = scanner->m_pagePosition - lcount - 1;
				}
			}
			else if ( scanner->m_page == page )
			{
				scanner->m_pagePosition = elems + scanner->m_pagePosition;
			}
		}

      return;
   }

	// if here, we can only perform a complete merge.

   // If right is not zero, excange us with left and right with page, and act as for left.
   if ( left == 0 )
   {
      left = page;
      page = right;
   }

   // we need a bit of space on the left.
   memcpy( keyInPage( page, left->m_count + 1), keysOfPage( page ), m_keySize * page->m_count );
   memcpy( valueInPage( page, left->m_count + 1), valuesOfPage( page ), m_valueSize * page->m_count );
   memcpy( &ptrsOfPage( page )[ left->m_count + 1], ptrsOfPage( page ), sizeof(MAP_PAGE *) * page->m_count );

   // nowy copy the keys on the left (0 to left->m_count -1)
   memcpy( keysOfPage( page ), keysOfPage( left ), m_keySize * left->m_count );
   memcpy( valuesOfPage( page ) , valuesOfPage( left ), m_valueSize * left->m_count  );
   memcpy( ptrsOfPage( page ), ptrsOfPage( left ), sizeof(MAP_PAGE *) * left->m_count );

   memcpy( keyInPage( page, left->m_count ), keyInPage( parent, left->m_parentElement ), m_keySize  );
   memcpy( valueInPage( page, left->m_count ) , valueInPage( parent, left->m_parentElement ), m_valueSize  );
   ptrsOfPage( page )[ left->m_count ]  = left->m_higher;
   page->m_count = left->m_count + page->m_count + 1; // page should be full now except for 1

   removeSpaceFromPage( parent, left->m_parentElement );

	// if the scanner was in the moved elements, move it too
	if ( scanner != 0 )
	{
		// if the scanner was at our parent, move it to limit in this page
		if ( scanner->m_page == parent )
		{
			if( scanner->m_pagePosition == left->m_parentElement )
			{
				scanner->m_page = page;
				scanner->m_pagePosition = limit;
			}
			else if ( scanner->m_pagePosition > left->m_parentElement )
			{
				scanner->m_pagePosition--;
			}
		}
		else if ( scanner->m_page == left )
		{
			scanner->m_page = page;
		}
		else if ( scanner->m_page == page )
		{
			scanner->m_pagePosition = limit + 1 + scanner->m_pagePosition;
		}
	}

   memFree( left );

   if ( ptrInPage( page, 0 ) != 0 )
      reshapeChildPointers( page );

   if ( parent->m_count < limit )
   {
      // treetop?
      if( parent == m_treeTop )
      {
         if ( parent->m_count == 0 )
         {
            // page was the higher of treetop...
            memFree( m_treeTop );
            m_treeTop = page;
            page->m_parent = 0;
         }
      }
      else
         rebalanceNode( parent, scanner );
   }


   return;
}

void Map::splitPage( MAP_PAGE *page )
{
   // splitting a page requires to insert the median element in the upper page.
   MAP_PAGE *parent = page->m_parent;

   void *key;
   void *value;
   int i;

   // this is the splitted node
   uint16 splitPos = page->m_count / 2;
   key = keyInPage( page, splitPos );
   value = valueInPage( page, splitPos );
   MAP_PAGE *selected_child = ptrInPage( page, splitPos );

   // create a new page that will be added to the left of this page
   MAP_PAGE *new_left = allocPage();
   memcpy( ptrsOfPage( new_left ), ptrsOfPage( page ), sizeof( MAP_PAGE *) * splitPos );
   memcpy( keysOfPage( new_left ), keysOfPage( page ), m_keySize * splitPos );
   memcpy( valuesOfPage( new_left ), valuesOfPage( page ), m_valueSize * splitPos );
   new_left->m_count = splitPos;

   // if we don't have a parent (if we are the treetop), we must create a new treetop
   if( parent == 0 )
   {
      fassert( page == m_treeTop );

      // we must create a new treetop whose higher pointer is the splitted page.
      parent = allocPage();
      parent->m_parent = 0;
      memcpy( keysOfPage( parent ), key , m_keySize );
      memcpy( valuesOfPage( parent ), value, m_valueSize );

      ptrsOfPage( parent ) [ 0 ] = new_left;
      parent->m_higher = page;
      parent->m_count = 1;

      new_left->m_parent = parent;
      new_left->m_parentElement = 0;

      page->m_parent = parent;
      page->m_parentElement = m_treeOrder;

      m_treeTop = parent;
   }
   else {
      fassert( page != m_treeTop );

      // Now save the element in the previous page
      // place the inserted item
      uint16 parentPos = page->m_parentElement;

      // insert the splitted item
      if( parentPos < parent->m_count )
         insertSpaceInPage( parent, parentPos );
      else {
         parentPos = parent->m_count;
         parent->m_count ++;
      }

      memcpy( keyInPage( parent, parentPos ), key , m_keySize );
      memcpy( valueInPage( parent, parentPos ), value, m_valueSize );
      // the page maintain the same parent, that is moved forward by one
      for( uint16 childPos = parentPos + 1; childPos < parent->m_count; childPos ++  )
      {
         ptrInPage( parent, childPos )->m_parentElement = childPos;
      }

      // the child of the inserted splitted element is the new left page
      ptrsOfPage( parent ) [ parentPos ] = new_left;
      new_left->m_parent = parent;
      new_left->m_parentElement = parentPos;
   }

   // the old child of the splitted element becomes the new higher of the left page
   if ( selected_child != 0 )
   {
      selected_child->m_parent = new_left;
      selected_child->m_parentElement = m_treeOrder;
      new_left->m_higher = selected_child;
   }
   else
      new_left->m_higher = 0;

   // now that we're done with the key, we can scroll back the original page.
   splitPos++;
   int scrollSize = page->m_count - splitPos;
   memcpy( ptrsOfPage( page ), ptrsOfPage( page ) + splitPos, sizeof( MAP_PAGE *) * scrollSize );
   memcpy( keysOfPage( page ), keyInPage( page, splitPos ) , m_keySize * scrollSize );
   memcpy( valuesOfPage( page ), valueInPage( page, splitPos ), m_valueSize * scrollSize );
   page->m_count = scrollSize;

   // we have to update all the children page to point to the new page positions.
   MAP_PAGE *child = ptrInPage( new_left, 0 );
   if ( child != 0 )
   {
      fassert( new_left->m_count == page->m_count ); // a little check
      for( i = 0; i < page->m_count; i++ )  // we've just set it to page count
      {
         child = ptrInPage( new_left, i );
         fassert( child != 0 );
         child->m_parent = new_left;
         child->m_parentElement = i;

         child = ptrInPage( page, i );
         fassert( child != 0 );
         // parent was already page.
         child->m_parentElement = i;
      }
   }

   // higher elements have already been updated correctly.
   // the only thing left to do is to see if the parent has overgrown.
   if( parent->m_count == m_treeOrder )
   {
      splitPage( parent );
   }
}

void Map::clear()
{
   destroyPage( m_treeTop );
   m_treeTop = allocPage();
   m_size = 0;
}

void Map::destroyPage( MAP_PAGE *page )
{
   for ( uint16 i = 0; i < page->m_count; i++ )
   {
      m_keyTraits->destroy( keyInPage( page, i ) );
      m_valueTraits->destroy( valueInPage( page, i ) );
      MAP_PAGE *child = ptrInPage( page, i );
      if ( child != 0 )
         destroyPage( child );
   }

   if ( page->m_higher != 0 )
      destroyPage( page->m_higher );

   memFree( page );
}

MapIterator Map::begin() const
{
   MAP_PAGE *page = m_treeTop;
   if ( m_size == 0 ) {
      return MapIterator( this, 0, 0 );
   }
   MAP_PAGE *next = ptrInPage( page, 0 );

   while( next != 0 )
   {
      page = next;
      next = ptrInPage( page, 0 );
   }

   MapIterator iter( this, page, 0 );
   return iter;
}

MapIterator Map::end() const
{
   MAP_PAGE *page = m_treeTop;
   if ( m_size == 0 ) {
      return MapIterator( this, 0, 0 );
   }

   while( page->m_higher != 0 )
      page = page->m_higher;

   // will generate an invalid iterator. prev() must be used.
   MapIterator iter( this, page, page->m_count );
   return iter;
}

bool MapIterator::next()
{
   // if it's the same page, go to the left.
   m_pagePosition++;
   MAP_PAGE *page = m_page;

   // if the current page is over...
   if ( m_pagePosition >= page->m_count )
   {
      // if we have a higher page, use that
      if( page->m_higher != 0 )
      {
         m_page = page->m_higher;
         page = m_map->ptrInPage( m_page, 0 );
         while( page != 0 )
         {
            m_page = page;
            page = m_map->ptrInPage( page, 0 );
         }

         m_pagePosition = 0;
         return true;
      }

      // get parent's sibling.
      int16 parentPos = page->m_parentElement;
      page = page->m_parent;
      while( page != 0 )
      {
         if ( parentPos < page->m_count )
         {
            // return our parent
            m_pagePosition = parentPos;
            m_page = page;
            return true;
         }

         // we were from an higher, so we can't get again in an higher.
         parentPos = page->m_parentElement;
         page = page->m_parent;
      }

      // we're off
      return false;

   }
   else {
      // get the child of our next sibling
      page = m_map->ptrInPage( page, m_pagePosition );
      if ( page == 0 )
      {
         // return our sibling ( as we already did m_pagePosition++)
         return true;
      }
      else {
         // descend to the bottom of the hyerarcy
         m_page = page;
         page = m_map->ptrInPage( page, 0 );
         while( page != 0 )
         {
            m_page = page;
            page = m_map->ptrInPage( page, 0 );
         }

         m_pagePosition = 0;
         return true;
      }
   }

   // we never get here
   fassert( false );
}


bool MapIterator::prev()
{
   // has this element a child ? - in this case, get the leftmost child element.
   if( m_pagePosition < m_page->m_count )
   {
      MAP_PAGE *child = m_map->ptrInPage( m_page, m_pagePosition );
      if( child != 0 )
      {
         while( child->m_higher != 0 )
         {
            child = child->m_higher;
         }

         m_page = child;
         m_pagePosition = child->m_count - 1;
         return true;
      }

      // if we have no children, proceed as usual
   }

   //are there other elements in this page?
   if( m_pagePosition > 0 )
   {
      m_pagePosition--;
      return true;
   }

   // else, we must get the previous element in the parent page.
   // we need to scan a parent page until we have a position which is greater than 0
   MAP_PAGE *page = m_page->m_parent;
   uint16 ppos = m_page->m_parentElement;

   while( page != 0 && ppos == 0 )
   {
      ppos = page->m_parentElement;
      page = page->m_parent;
   }

   // if the page is zero, we can't do anything more
   if( page == 0 )
   {
      // invalidate the iterator
      m_pagePosition = m_map->m_treeOrder;
      return false;
   }

   // if the PPOS is >= count, it means we was in an "higher page"
   if( ppos >= page->m_count )
      ppos = page->m_count - 1;
   else
      ppos--;

   m_page = page;
   m_pagePosition = ppos;

   return true;
}

bool MapIterator::hasNext() const
{
   return m_page != 0 &&
            ( m_page->m_count > m_pagePosition + 1 ||
               m_map->ptrInPage( m_page, m_page->m_count - 1 ) != 0 );
}

bool MapIterator::hasPrev() const
{
   if ( m_page == 0 )
      return false;

   if( m_pagePosition > 0 )
      return true;

   uint16 ppos = m_page->m_parentElement;
   MAP_PAGE *page = m_page->m_parent;


   while( page != 0 && ppos == 0 )
   {
      ppos = page->m_parentElement;
      page = page->m_parent;
   }

   return page != 0;
}

bool MapIterator::equal( const MapIterator &other ) const
{
   return m_map == other.m_map &&
          m_page == other.m_page &&
          m_pagePosition == other.m_pagePosition;
}

//=======================================================
// Map traits

uint32 MapPtrTraits::memSize() const
{
	return sizeof( Map * );
}

void  MapPtrTraits::init( void *itemZone ) const
{
	Map **map = (Map **) itemZone;
	*map = 0;
}

void MapPtrTraits::copy( void *targetZone, const void *sourceZone ) const
{
   Map **tgt = (Map **) targetZone;
   Map *src = (Map *) sourceZone;
	*tgt = src;
}

int MapPtrTraits::compare( const void *first, const void *second ) const
{
	return -1;
}

void MapPtrTraits::destroy( void *item ) const
{
// do nothing
}

bool MapPtrTraits::owning() const
{
	return false;
}

void MapPtrOwnTraits::destroy( void *item ) const
{
   Map **ptr = (Map**) item;
   delete (*ptr);
}

bool MapPtrOwnTraits::owning() const
{
	return true;
}

namespace traits
{
	FALCON_DYN_SYM MapPtrTraits &t_MapPtr();
	FALCON_DYN_SYM MapPtrOwnTraits &t_MapPtrOwn();
}

}

/* end of genericmap.cpp */