1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
|
/*
FALCON - The Falcon Programming Language.
FILE: mt_posix.cpp
Multithreaded extensions - POSIX specific.
-------------------------------------------------------------------
Author: Giancarlo Niccolai
Begin: Sat, 17 Jan 2009 17:06:47 +0100
-------------------------------------------------------------------
(C) Copyright 2008: the FALCON developers (see list in AUTHORS file)
See LICENSE file for licensing details.
*/
#define _XOPEN_SOURCE_EXTENDED
#include <time.h>
// this for gettimeofday on macosx
#include <sys/time.h>
#include <falcon/mt.h>
#include <falcon/memory.h>
namespace Falcon
{
static Mutex s_cs;
ThreadSpecific::ThreadSpecific( void (*destructor)(void*) )
{
#ifndef NDEBUG
int value = pthread_key_create( &m_key, destructor );
fassert( value == 0 );
#else
pthread_key_create( &m_key, destructor );
#endif
}
/** Performs an atomic thread safe increment. */
int32 atomicInc( volatile int32 &data )
{
s_cs.lock();
register int32 res = ++data;
s_cs.unlock();
return res;
}
/** Performs an atomic thread safe decrement. */
int32 atomicDec( volatile int32 &data )
{
s_cs.lock();
register int32 res = --data;
s_cs.unlock();
return res;
}
void Event::set()
{
#ifdef NDEBUG
pthread_mutex_lock( &m_mtx );
m_bIsSet = true;
if ( m_bAutoReset )
pthread_cond_signal( &m_cv );
else
pthread_cond_broadcast( &m_cv );
pthread_mutex_unlock( &m_mtx );
#else
int result = pthread_mutex_lock( &m_mtx );
fassert( result == 0 );
m_bIsSet = true;
if ( m_bAutoReset )
result = pthread_cond_signal( &m_cv );
else
result = pthread_cond_broadcast( &m_cv );
fassert( result == 0 );
result = pthread_mutex_unlock( &m_mtx );
fassert( result == 0 );
#endif
}
bool Event::wait( int32 to )
{
pthread_mutex_lock( &m_mtx );
// are we lucky?
if( m_bIsSet )
{
if ( m_bAutoReset )
m_bIsSet = false;
pthread_mutex_unlock( &m_mtx );
return true;
}
// No? -- then are we unlucky?
if ( to == 0 )
{
pthread_mutex_unlock( &m_mtx );
return false;
}
// neither? -- then let's wait. How much?
if ( to < 0 )
{
do {
pthread_cond_wait( &m_cv, &m_mtx );
} while( ! m_bIsSet );
}
else
{
// release the mutex for a while
pthread_mutex_unlock( &m_mtx );
struct timespec ts;
#if _POSIX_TIMERS > 0
clock_gettime(CLOCK_REALTIME, &ts);
#else
struct timeval tv;
gettimeofday(&tv, NULL);
ts.tv_sec = tv.tv_sec;
ts.tv_nsec = tv.tv_usec*1000;
#endif
ts.tv_sec += to/1000;
ts.tv_nsec += (to%1000) * 1000000;
if( ts.tv_nsec >= 1000000000 )
{
++ts.tv_sec;
ts.tv_nsec -= 1000000000;
}
pthread_mutex_lock( &m_mtx );
while( ! m_bIsSet )
{
int res;
if( (res = pthread_cond_timedwait( &m_cv, &m_mtx, &ts )) == ETIMEDOUT )
{
// wait failed
pthread_mutex_unlock( &m_mtx );
return false;
}
// be sure that we haven't got other reasons to fail.
fassert( res == 0 );
}
}
// here, m_bIsSet is set...
if ( m_bAutoReset )
m_bIsSet = false;
pthread_mutex_unlock( &m_mtx );
return true;
}
//==================================================================================
// System threads.
//
SysThread::~SysThread()
{
pthread_mutex_destroy( &m_sysdata->m_mtxT );
memFree( m_sysdata );
}
SysThread::SysThread( Runnable* r ):
m_runnable( r )
{
m_sysdata = ( struct SYSTH_DATA* ) memAlloc( sizeof( struct SYSTH_DATA ) );
m_sysdata->m_bDetached = false;
m_sysdata->m_bDone = false;
m_sysdata->m_lastError = 0;
pthread_mutex_init( &m_sysdata->m_mtxT, NULL );
}
void SysThread::attachToCurrent()
{
m_sysdata->pth = pthread_self();
}
void* SysThread::RunAThread( void *data )
{
SysThread* sth = (SysThread*) data;
return sth->run();
}
bool SysThread::start( const ThreadParams ¶ms )
{
pthread_attr_t attr;
pthread_attr_init( &attr );
if( params.stackSize() != 0 )
{
if( (m_sysdata->m_lastError = pthread_attr_setstacksize( &attr, params.stackSize() ) ) != 0 )
{
pthread_attr_destroy( &attr );
return false;
}
}
if ( params.detached() )
{
if( (m_sysdata->m_lastError = pthread_attr_setdetachstate( &attr, params.detached() ? 1:0 ) ) != 0 )
{
pthread_attr_destroy( &attr );
return false;
}
}
// time to increment the reference count of our thread that is going to run
if ( (m_sysdata->m_lastError = pthread_create( &m_sysdata->pth, &attr, &SysThread::RunAThread, this ) ) != 0 )
{
pthread_attr_destroy( &attr );
return false;
}
if ( params.detached() )
{
detach();
}
pthread_attr_destroy( &attr );
return true;
}
void SysThread::disengage()
{
delete this;
}
void SysThread::detach()
{
// are we already done?
pthread_mutex_lock( &m_sysdata->m_mtxT );
if ( m_sysdata->m_bDone )
{
pthread_mutex_unlock( &m_sysdata->m_mtxT );
// disengage system joins and free system data.
pthread_detach( m_sysdata->pth );
// free app data.
delete this;
}
else {
// tell the run function to dispose us when done.
m_sysdata->m_bDetached = true;
pthread_mutex_unlock( &m_sysdata->m_mtxT );
}
}
bool SysThread::join( void* &result )
{
if ( pthread_join( m_sysdata->pth, &result ) == 0 )
{
delete this;
return true;
}
return false;
}
uint64 SysThread::getID()
{
return (uint64) m_sysdata->pth;
}
uint64 SysThread::getCurrentID()
{
return (uint64) pthread_self();
}
bool SysThread::isCurrentThread()
{
return pthread_equal( m_sysdata->pth, pthread_self() ) != 0;
}
bool SysThread::equal( const SysThread *th1 ) const
{
return pthread_equal( m_sysdata->pth, th1->m_sysdata->pth ) != 0;
}
void *SysThread::run()
{
fassert( m_runnable != 0 );
void* data = m_runnable->run();
// have we been detached in the meanwhile? -- we must dispose our data now.
pthread_mutex_lock( &m_sysdata->m_mtxT );
if( m_sysdata->m_bDetached )
{
pthread_mutex_unlock( &m_sysdata->m_mtxT );
delete this;
}
else {
m_sysdata->m_bDone = true;
pthread_mutex_unlock( &m_sysdata->m_mtxT );
}
return data;
}
}
/* end of mt_posix.cpp */
|