1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
|
/*
Copyright (C) 2021 The Falco Authors.
This file is dual licensed under either the MIT or GPL 2. See MIT.txt
or GPL2.txt for full copies of the license.
*/
#ifndef __SYSDIGBPF_HELPERS_H
#define __SYSDIGBPF_HELPERS_H
#include <linux/compat.h>
#include <net/compat.h>
#include <net/sock.h>
#include <net/inet_sock.h>
#include <net/af_unix.h>
#include <linux/in.h>
#include <linux/fdtable.h>
#include <linux/net.h>
#include "../ppm_flag_helpers.h"
#include "builtins.h"
static __always_inline bool in_port_range(uint16_t port, uint16_t min, uint16_t max)
{
return port >= min && port <= max;
}
static __always_inline struct file *bpf_fget(int fd)
{
struct task_struct *task;
struct files_struct *files;
struct fdtable *fdt;
int max_fds;
struct file **fds;
struct file *fil;
task = (struct task_struct *)bpf_get_current_task();
if (!task)
return NULL;
files = _READ(task->files);
if (!files)
return NULL;
fdt = _READ(files->fdt);
if (!fdt)
return NULL;
max_fds = _READ(fdt->max_fds);
if (fd >= max_fds)
return NULL;
fds = _READ(fdt->fd);
fil = _READ(fds[fd]);
return fil;
}
static __always_inline struct socket *bpf_sockfd_lookup(struct filler_data *data,
int fd)
{
struct file *file;
const struct file_operations *fop;
struct socket *sock;
if (!data->settings->socket_file_ops)
return NULL;
file = bpf_fget(fd);
if (!file)
return NULL;
fop = _READ(file->f_op);
if (fop != data->settings->socket_file_ops)
return NULL;
sock = _READ(file->private_data);
return sock;
}
static __always_inline unsigned long bpf_encode_dev(dev_t dev)
{
unsigned int major = MAJOR(dev);
unsigned int minor = MINOR(dev);
return (minor & 0xff) | (major << 8) | ((minor & ~0xff) << 12);
}
static __always_inline bool bpf_get_fd_dev_ino(int fd, unsigned long *dev, unsigned long *ino)
{
struct super_block *sb;
struct inode *inode;
struct file *file;
dev_t kdev;
file = bpf_fget(fd);
if (!file)
return false;
inode = _READ(file->f_inode);
if (!inode)
return false;
sb = _READ(inode->i_sb);
if (!sb)
return false;
kdev = _READ(sb->s_dev);
*dev = bpf_encode_dev(kdev);
*ino = _READ(inode->i_ino);
return true;
}
static __always_inline bool bpf_ipv6_addr_any(const struct in6_addr *a)
{
const unsigned long *ul = (const unsigned long *)a;
return (ul[0] | ul[1]) == 0UL;
}
static __always_inline bool bpf_getsockname(struct socket *sock,
struct sockaddr_storage *addr,
int peer)
{
struct sock *sk;
sa_family_t family;
sk = _READ(sock->sk);
if (!sk)
return false;
family = _READ(sk->sk_family);
switch (family) {
case AF_INET:
{
struct inet_sock *inet = (struct inet_sock *)sk;
struct sockaddr_in *sin = (struct sockaddr_in *)addr;
sin->sin_family = AF_INET;
if (peer) {
sin->sin_port = _READ(inet->inet_dport);
sin->sin_addr.s_addr = _READ(inet->inet_daddr);
} else {
u32 addr = _READ(inet->inet_rcv_saddr);
if (!addr)
addr = _READ(inet->inet_saddr);
sin->sin_port = _READ(inet->inet_sport);
sin->sin_addr.s_addr = addr;
}
break;
}
case AF_INET6:
{
struct sockaddr_in6 *sin = (struct sockaddr_in6 *)addr;
struct inet_sock *inet = (struct inet_sock *)sk;
struct ipv6_pinfo {
struct in6_addr saddr;
};
struct ipv6_pinfo *np = (struct ipv6_pinfo *)_READ(inet->pinet6);
sin->sin6_family = AF_INET6;
if (peer) {
sin->sin6_port = _READ(inet->inet_dport);
sin->sin6_addr = _READ(sk->sk_v6_daddr);
} else {
sin->sin6_addr = _READ(sk->sk_v6_rcv_saddr);
if (bpf_ipv6_addr_any(&sin->sin6_addr))
sin->sin6_addr = _READ(np->saddr);
sin->sin6_port = _READ(inet->inet_sport);
}
break;
}
case AF_UNIX:
{
struct sockaddr_un *sunaddr = (struct sockaddr_un *)addr;
struct unix_sock *u;
struct unix_address *addr;
if (peer)
sk = _READ(((struct unix_sock *)sk)->peer);
u = (struct unix_sock *)sk;
addr = _READ(u->addr);
if (!addr) {
sunaddr->sun_family = AF_UNIX;
sunaddr->sun_path[0] = 0;
} else {
unsigned int len = _READ(addr->len);
if (len > sizeof(struct sockaddr_storage))
len = sizeof(struct sockaddr_storage);
#ifdef BPF_FORBIDS_ZERO_ACCESS
if (len > 0)
bpf_probe_read(sunaddr, ((len - 1) & 0xff) + 1, addr->name);
#else
bpf_probe_read(sunaddr, len, addr->name);
#endif
}
break;
}
default:
return false;
}
return true;
}
static __always_inline int bpf_addr_to_kernel(void *uaddr, int ulen,
struct sockaddr *kaddr)
{
int len = _READ(ulen);
if (len < 0 || len > sizeof(struct sockaddr_storage))
return -EINVAL;
if (len == 0)
return 0;
#ifdef BPF_FORBIDS_ZERO_ACCESS
if (bpf_probe_read(kaddr, ((len - 1) & 0xff) + 1, uaddr))
#else
if (bpf_probe_read(kaddr, len & 0xff, uaddr))
#endif
return -EFAULT;
return 0;
}
#define get_buf(x) data->buf[(data->state->tail_ctx.curoff + (x)) & SCRATCH_SIZE_HALF]
static __always_inline u32 bpf_compute_snaplen(struct filler_data *data,
u32 lookahead_size)
{
struct sockaddr_storage *sock_address;
struct sockaddr_storage *peer_address;
u32 res = data->settings->snaplen;
struct socket *sock;
struct sock *sk;
u16 sport;
u16 dport;
if (data->settings->tracers_enabled &&
data->state->tail_ctx.evt_type == PPME_SYSCALL_WRITE_X) {
struct file *fil;
struct inode *f_inode;
dev_t i_rdev;
fil = bpf_fget(data->fd);
if (!fil)
return res;
f_inode = _READ(fil->f_inode);
if (!f_inode)
return res;
i_rdev = _READ(f_inode->i_rdev);
if (i_rdev == PPM_NULL_RDEV)
return RW_SNAPLEN_EVENT;
}
if (!data->settings->do_dynamic_snaplen)
return res;
if (data->fd == -1)
return res;
sock = bpf_sockfd_lookup(data, data->fd);
if (!sock)
return res;
sock_address = (struct sockaddr_storage *)data->tmp_scratch;
peer_address = (struct sockaddr_storage *)data->tmp_scratch + 1;
if (!bpf_getsockname(sock, sock_address, 0))
return res;
if (data->state->tail_ctx.evt_type == PPME_SOCKET_SENDTO_X) {
unsigned long val;
struct sockaddr *usrsockaddr;
usrsockaddr = (struct sockaddr *)bpf_syscall_get_argument(data, 4);
if (!usrsockaddr) {
if (!bpf_getsockname(sock, peer_address, 1))
return res;
} else {
int addrlen = bpf_syscall_get_argument(data, 5);
if (addrlen != 0) {
if (bpf_addr_to_kernel(usrsockaddr, addrlen, (struct sockaddr *)peer_address))
return res;
} else if (!bpf_getsockname(sock, peer_address, 1)) {
return res;
}
}
} else if (data->state->tail_ctx.evt_type == PPME_SOCKET_SENDMSG_X) {
struct sockaddr *usrsockaddr;
struct user_msghdr mh;
unsigned long val;
int addrlen;
val = bpf_syscall_get_argument(data, 1);
if (bpf_probe_read(&mh, sizeof(mh), (void *)val)) {
usrsockaddr = NULL;
addrlen = 0;
} else {
usrsockaddr = (struct sockaddr *)mh.msg_name;
addrlen = mh.msg_namelen;
}
if (usrsockaddr && addrlen != 0) {
if (bpf_addr_to_kernel(usrsockaddr, addrlen, (struct sockaddr *)peer_address))
return res;
} else if (!bpf_getsockname(sock, peer_address, 1)) {
return res;
}
} else if (!bpf_getsockname(sock, peer_address, 1)) {
return res;
}
sk = _READ(sock->sk);
if (!sk)
return res;
sa_family_t family = _READ(sk->sk_family);
if (family == AF_INET) {
sport = ntohs(((struct sockaddr_in *)sock_address)->sin_port);
dport = ntohs(((struct sockaddr_in *)peer_address)->sin_port);
} else if (family == AF_INET6) {
sport = ntohs(((struct sockaddr_in6 *)sock_address)->sin6_port);
dport = ntohs(((struct sockaddr_in6 *)peer_address)->sin6_port);
} else {
sport = 0;
dport = 0;
}
uint16_t min_port = data->settings->fullcapture_port_range_start;
uint16_t max_port = data->settings->fullcapture_port_range_end;
if (max_port > 0 &&
(in_port_range(sport, min_port, max_port) ||
in_port_range(dport, min_port, max_port))) {
/*
* Before checking the well-known ports, see if the user has requested
* an increased snaplen for the port in question.
*/
return RW_MAX_FULLCAPTURE_PORT_SNAPLEN;
} else if (sport == PPM_PORT_MYSQL || dport == PPM_PORT_MYSQL) {
if (lookahead_size >= 5) {
if (get_buf(0) == 3 ||
get_buf(1) == 3 ||
get_buf(2) == 3 ||
get_buf(3) == 3 ||
get_buf(4) == 3) {
return 2000;
} else if (get_buf(2) == 0 && get_buf(3) == 0) {
return 2000;
}
}
} else if (sport == PPM_PORT_POSTGRES || dport == PPM_PORT_POSTGRES) {
if (lookahead_size >= 2) {
if ((get_buf(0) == 'Q' && get_buf(1) == 0) || /* SimpleQuery command */
(get_buf(0) == 'P' && get_buf(1) == 0) || /* Prepare statement command */
(get_buf(4) == 0 && get_buf(5) == 3 && get_buf(6) == 0) || /* startup command */
(get_buf(0) == 'E' && get_buf(1) == 0) /* error or execute command */
) {
return 2000;
}
}
} else if ((lookahead_size >= 4 && get_buf(1) == 0 && get_buf(2) == 0 && get_buf(2) == 0) || /* matches command */
(lookahead_size >= 16 && (*(s32 *)&get_buf(12) == 1 || /* matches header */
*(s32 *)&get_buf(12) == 2001 ||
*(s32 *)&get_buf(12) == 2002 ||
*(s32 *)&get_buf(12) == 2003 ||
*(s32 *)&get_buf(12) == 2004 ||
*(s32 *)&get_buf(12) == 2005 ||
*(s32 *)&get_buf(12) == 2006 ||
*(s32 *)&get_buf(12) == 2007))) {
return 2000;
} else if (dport == data->settings->statsd_port) {
return 2000;
} else {
if (lookahead_size >= 5) {
u32 buf = *(u32 *)&get_buf(0);
if (buf == 0x20544547 || // "GET "
buf == 0x54534F50 || // "POST"
buf == 0x20545550 || // "PUT "
buf == 0x454C4544 || // "DELE"
buf == 0x43415254 || // "TRAC"
buf == 0x4E4E4F43 || // "CONN"
buf == 0x4954504F || // "OPTI"
(buf == 0x50545448 && data->buf[(data->state->tail_ctx.curoff + 4) & SCRATCH_SIZE_HALF] == '/')) { // "HTTP/"
return 2000;
}
}
}
return res;
}
static __always_inline int unix_socket_path(char *dest, const char *user_ptr, size_t size) {
int res = bpf_probe_read_str(dest,
size,
user_ptr);
/*
* Extract from: https://man7.org/linux/man-pages/man7/unix.7.html
* an abstract socket address is distinguished (from a
* pathname socket) by the fact that sun_path[0] is a null byte
* ('\0'). The socket's address in this namespace is given by
* the additional bytes in sun_path that are covered by the
* specified length of the address structure.
*/
if (res == 1) {
dest[0] = '@';
res = bpf_probe_read_str(dest + 1,
size - 1, // account for '@'
user_ptr + 1);
res++; // account for '@'
}
return res;
}
static __always_inline u16 bpf_pack_addr(struct filler_data *data,
struct sockaddr *usrsockaddr,
int ulen)
{
u32 ip;
u16 port;
sa_family_t family = usrsockaddr->sa_family;
struct sockaddr_in *usrsockaddr_in;
struct sockaddr_in6 *usrsockaddr_in6;
struct sockaddr_un *usrsockaddr_un;
u16 size;
char *dest;
int res;
switch (family) {
case AF_INET:
/*
* Map the user-provided address to a sockaddr_in
*/
usrsockaddr_in = (struct sockaddr_in *)usrsockaddr;
/*
* Retrieve the src address
*/
ip = usrsockaddr_in->sin_addr.s_addr;
port = ntohs(usrsockaddr_in->sin_port);
/*
* Pack the tuple info in the temporary buffer
*/
size = 1 + 4 + 2; /* family + ip + port */
data->buf[data->state->tail_ctx.curoff & SCRATCH_SIZE_HALF] = socket_family_to_scap(family);
memcpy(&data->buf[(data->state->tail_ctx.curoff + 1) & SCRATCH_SIZE_HALF], &ip, 4);
memcpy(&data->buf[(data->state->tail_ctx.curoff + 5) & SCRATCH_SIZE_HALF], &port, 2);
break;
case AF_INET6:
/*
* Map the user-provided address to a sockaddr_in
*/
usrsockaddr_in6 = (struct sockaddr_in6 *)usrsockaddr;
/*
* Retrieve the src address
*/
port = ntohs(usrsockaddr_in6->sin6_port);
/*
* Pack the tuple info in the temporary buffer
*/
size = 1 + 16 + 2; /* family + ip + port */
data->buf[data->state->tail_ctx.curoff & SCRATCH_SIZE_HALF] = socket_family_to_scap(family);
memcpy(&data->buf[(data->state->tail_ctx.curoff + 1) & SCRATCH_SIZE_HALF],
usrsockaddr_in6->sin6_addr.s6_addr, 16);
memcpy(&data->buf[(data->state->tail_ctx.curoff + 17) & SCRATCH_SIZE_HALF], &port, 2);
break;
case AF_UNIX:
/*
* Map the user-provided address to a sockaddr_in
*/
usrsockaddr_un = (struct sockaddr_un *)usrsockaddr;
/*
* Put a 0 at the end of struct sockaddr_un because
* the user might not have considered it in the length
*/
if (ulen == sizeof(struct sockaddr_storage))
((char *)usrsockaddr_un)[(ulen - 1) & SCRATCH_SIZE_MAX] = 0;
else
((char *)usrsockaddr_un)[ulen & SCRATCH_SIZE_MAX] = 0;
/*
* Pack the data into the target buffer
*/
size = 1;
data->buf[data->state->tail_ctx.curoff & SCRATCH_SIZE_HALF] = socket_family_to_scap(family);
res = unix_socket_path(&data->buf[(data->state->tail_ctx.curoff + 1) & SCRATCH_SIZE_HALF],
usrsockaddr_un->sun_path,
UNIX_PATH_MAX);
size += res;
break;
default:
size = 0;
break;
}
return size;
}
static __always_inline long bpf_fd_to_socktuple(struct filler_data *data,
int fd,
struct sockaddr *usrsockaddr,
int ulen,
bool use_userdata,
bool is_inbound,
char *tmp_area)
{
struct sockaddr_storage *sock_address;
struct sockaddr_storage *peer_address;
unsigned short family;
struct socket *sock;
struct sock *sk;
long size = 0;
sock = bpf_sockfd_lookup(data, fd);
if (!sock)
return 0;
sock_address = (struct sockaddr_storage *)tmp_area;
peer_address = (struct sockaddr_storage *)tmp_area + 1;
if (!bpf_getsockname(sock, sock_address, 0))
return 0;
sk = _READ(sock->sk);
if (!sk)
return 0;
family = _READ(sk->sk_family);
switch (family) {
case AF_INET:
{
u32 sip;
u32 dip;
u16 sport;
u16 dport;
if (!use_userdata) {
if (bpf_getsockname(sock, peer_address, 1)) {
if (is_inbound) {
sip = ((struct sockaddr_in *)peer_address)->sin_addr.s_addr;
sport = ntohs(((struct sockaddr_in *)peer_address)->sin_port);
dip = ((struct sockaddr_in *)sock_address)->sin_addr.s_addr;
dport = ntohs(((struct sockaddr_in *)sock_address)->sin_port);
} else {
sip = ((struct sockaddr_in *)sock_address)->sin_addr.s_addr;
sport = ntohs(((struct sockaddr_in *)sock_address)->sin_port);
dip = ((struct sockaddr_in *)peer_address)->sin_addr.s_addr;
dport = ntohs(((struct sockaddr_in *)peer_address)->sin_port);
}
} else {
sip = 0;
sport = 0;
dip = 0;
dport = 0;
}
} else {
struct sockaddr_in *usrsockaddr_in = (struct sockaddr_in *)usrsockaddr;
if (is_inbound) {
sip = usrsockaddr_in->sin_addr.s_addr;
sport = ntohs(usrsockaddr_in->sin_port);
dip = ((struct sockaddr_in *)sock_address)->sin_addr.s_addr;
dport = ntohs(((struct sockaddr_in *)sock_address)->sin_port);
} else {
sip = ((struct sockaddr_in *)sock_address)->sin_addr.s_addr;
sport = ntohs(((struct sockaddr_in *)sock_address)->sin_port);
dip = usrsockaddr_in->sin_addr.s_addr;
dport = ntohs(usrsockaddr_in->sin_port);
}
}
size = 1 + 4 + 4 + 2 + 2;
data->buf[data->state->tail_ctx.curoff & SCRATCH_SIZE_HALF] = socket_family_to_scap(family);
memcpy(&data->buf[(data->state->tail_ctx.curoff + 1) & SCRATCH_SIZE_HALF], &sip, 4);
memcpy(&data->buf[(data->state->tail_ctx.curoff + 5) & SCRATCH_SIZE_HALF], &sport, 2);
memcpy(&data->buf[(data->state->tail_ctx.curoff + 7) & SCRATCH_SIZE_HALF], &dip, 4);
memcpy(&data->buf[(data->state->tail_ctx.curoff + 11) & SCRATCH_SIZE_HALF], &dport, 2);
break;
}
case AF_INET6:
{
u8 *sip6;
u8 *dip6;
u16 sport;
u16 dport;
if (!use_userdata) {
if (bpf_getsockname(sock, peer_address, 1)) {
if (is_inbound) {
sip6 = ((struct sockaddr_in6 *)peer_address)->sin6_addr.s6_addr;
sport = ntohs(((struct sockaddr_in6 *)peer_address)->sin6_port);
dip6 = ((struct sockaddr_in6 *)sock_address)->sin6_addr.s6_addr;
dport = ntohs(((struct sockaddr_in6 *)sock_address)->sin6_port);
} else {
sip6 = ((struct sockaddr_in6 *)sock_address)->sin6_addr.s6_addr;
sport = ntohs(((struct sockaddr_in6 *)sock_address)->sin6_port);
dip6 = ((struct sockaddr_in6 *)peer_address)->sin6_addr.s6_addr;
dport = ntohs(((struct sockaddr_in6 *)peer_address)->sin6_port);
}
} else {
memset(peer_address, 0, 16);
sip6 = (u8 *)peer_address;
dip6 = (u8 *)peer_address;
sport = 0;
dport = 0;
}
} else {
/*
* Map the user-provided address to a sockaddr_in6
*/
struct sockaddr_in6 *usrsockaddr_in6 = (struct sockaddr_in6 *)usrsockaddr;
if (is_inbound) {
sip6 = usrsockaddr_in6->sin6_addr.s6_addr;
sport = ntohs(usrsockaddr_in6->sin6_port);
dip6 = ((struct sockaddr_in6 *)sock_address)->sin6_addr.s6_addr;
dport = ntohs(((struct sockaddr_in6 *)sock_address)->sin6_port);
} else {
sip6 = ((struct sockaddr_in6 *)sock_address)->sin6_addr.s6_addr;
sport = ntohs(((struct sockaddr_in6 *)sock_address)->sin6_port);
dip6 = usrsockaddr_in6->sin6_addr.s6_addr;
dport = ntohs(usrsockaddr_in6->sin6_port);
}
}
/*
* Pack the tuple info in the temporary buffer
*/
size = 1 + 16 + 16 + 2 + 2; /* family + sip + dip + sport + dport */
data->buf[data->state->tail_ctx.curoff & SCRATCH_SIZE_HALF] = socket_family_to_scap(family);
memcpy(&data->buf[(data->state->tail_ctx.curoff + 1) & SCRATCH_SIZE_HALF], sip6, 16);
memcpy(&data->buf[(data->state->tail_ctx.curoff + 17) & SCRATCH_SIZE_HALF], &sport, 2);
memcpy(&data->buf[(data->state->tail_ctx.curoff + 19) & SCRATCH_SIZE_HALF], dip6, 16);
memcpy(&data->buf[(data->state->tail_ctx.curoff + 35) & SCRATCH_SIZE_HALF], &dport, 2);
break;
}
case AF_UNIX:
{
/*
* Retrieve the addresses
*/
struct unix_sock *us = (struct unix_sock *)sk;
struct sock *speer = _READ(us->peer);
char *us_name;
data->buf[data->state->tail_ctx.curoff & SCRATCH_SIZE_HALF] = socket_family_to_scap(family);
if (is_inbound) {
memcpy(&data->buf[(data->state->tail_ctx.curoff + 1) & SCRATCH_SIZE_HALF], &us, 8);
memcpy(&data->buf[(data->state->tail_ctx.curoff + 1 + 8) & SCRATCH_SIZE_HALF], &speer, 8);
} else {
memcpy(&data->buf[(data->state->tail_ctx.curoff + 1) & SCRATCH_SIZE_HALF], &speer, 8);
memcpy(&data->buf[(data->state->tail_ctx.curoff + 1 + 8) & SCRATCH_SIZE_HALF], &us, 8);
}
/*
* Pack the data into the target buffer
*/
size = 1 + 8 + 8;
if (!use_userdata) {
if (is_inbound) {
us_name = ((struct sockaddr_un *)sock_address)->sun_path;
} else {
bpf_getsockname(sock, peer_address, 1);
us_name = ((struct sockaddr_un *)peer_address)->sun_path;
}
} else {
/*
* Map the user-provided address to a sockaddr_in
*/
struct sockaddr_un *usrsockaddr_un = (struct sockaddr_un *)usrsockaddr;
/*
* Put a 0 at the end of struct sockaddr_un because
* the user might not have considered it in the length
*/
if (ulen == sizeof(struct sockaddr_storage))
((char *)usrsockaddr_un)[(ulen - 1) & SCRATCH_SIZE_MAX] = 0;
else
((char *)usrsockaddr_un)[ulen & SCRATCH_SIZE_MAX] = 0;
if (is_inbound)
us_name = ((struct sockaddr_un *)sock_address)->sun_path;
else
us_name = usrsockaddr_un->sun_path;
}
int res = unix_socket_path(&data->buf[(data->state->tail_ctx.curoff + 1 + 8 + 8) & SCRATCH_SIZE_HALF],
us_name,
UNIX_PATH_MAX);
size += res;
break;
}
}
return size;
}
static __always_inline int __bpf_val_to_ring(struct filler_data *data,
unsigned long val,
unsigned long val_len,
enum ppm_param_type type,
u8 dyn_idx,
bool enforce_snaplen)
{
unsigned int len_dyn = 0;
unsigned int len;
unsigned long curoff_bounded;
curoff_bounded = data->state->tail_ctx.curoff & SCRATCH_SIZE_HALF;
if (data->state->tail_ctx.curoff > SCRATCH_SIZE_HALF)
{
return PPM_FAILURE_FRAME_SCRATCH_MAP_FULL;
}
if (dyn_idx != (u8)-1) {
*((u8 *)&data->buf[curoff_bounded]) = dyn_idx;
len_dyn = sizeof(u8);
data->state->tail_ctx.curoff += len_dyn;
data->state->tail_ctx.len += len_dyn;
}
curoff_bounded = data->state->tail_ctx.curoff & SCRATCH_SIZE_HALF;
if (data->state->tail_ctx.curoff > SCRATCH_SIZE_HALF)
{
return PPM_FAILURE_FRAME_SCRATCH_MAP_FULL;
}
switch (type) {
case PT_CHARBUF:
case PT_FSPATH:
case PT_FSRELPATH: {
if (!data->curarg_already_on_frame) {
int res;
res = bpf_probe_read_str(&data->buf[curoff_bounded],
PPM_MAX_ARG_SIZE,
(const void *)val);
if (res == -EFAULT)
return PPM_FAILURE_INVALID_USER_MEMORY;
len = res;
} else {
len = val_len;
}
break;
}
case PT_BYTEBUF: {
if (val_len) {
len = val_len;
if (enforce_snaplen) {
u32 dpi_lookahead_size = DPI_LOOKAHEAD_SIZE;
unsigned int sl;
if (dpi_lookahead_size > len)
dpi_lookahead_size = len;
if (!data->curarg_already_on_frame) {
volatile u16 read_size = dpi_lookahead_size;
#ifdef BPF_FORBIDS_ZERO_ACCESS
if (read_size)
if (bpf_probe_read(&data->buf[curoff_bounded],
((read_size - 1) & SCRATCH_SIZE_HALF) + 1,
(void *)val))
#else
if (bpf_probe_read(&data->buf[curoff_bounded],
read_size & SCRATCH_SIZE_HALF,
(void *)val))
#endif
return PPM_FAILURE_INVALID_USER_MEMORY;
}
sl = bpf_compute_snaplen(data, dpi_lookahead_size);
if (len > sl)
len = sl;
}
if (len > PPM_MAX_ARG_SIZE)
len = PPM_MAX_ARG_SIZE;
if (!data->curarg_already_on_frame) {
volatile u16 read_size = len;
curoff_bounded = data->state->tail_ctx.curoff & SCRATCH_SIZE_HALF;
if (data->state->tail_ctx.curoff > SCRATCH_SIZE_HALF)
{
return PPM_FAILURE_FRAME_SCRATCH_MAP_FULL;
}
#ifdef BPF_FORBIDS_ZERO_ACCESS
if (read_size)
if (bpf_probe_read(&data->buf[curoff_bounded],
((read_size - 1) & SCRATCH_SIZE_HALF) + 1,
(void *)val))
#else
if (bpf_probe_read(&data->buf[curoff_bounded],
read_size & SCRATCH_SIZE_HALF,
(void *)val))
#endif
return PPM_FAILURE_INVALID_USER_MEMORY;
}
} else {
len = 0;
}
break;
}
case PT_SOCKADDR:
case PT_SOCKTUPLE:
case PT_FDLIST:
if (!data->curarg_already_on_frame) {
bpf_printk("expected arg already on frame: evt_type %d, curarg %d, type %d\n",
data->state->tail_ctx.evt_type,
data->state->tail_ctx.curarg, type);
return PPM_FAILURE_BUG;
}
len = val_len;
break;
case PT_FLAGS8:
case PT_UINT8:
case PT_SIGTYPE:
*((u8 *)&data->buf[curoff_bounded]) = val;
len = sizeof(u8);
break;
case PT_FLAGS16:
case PT_UINT16:
case PT_SYSCALLID:
*((u16 *)&data->buf[curoff_bounded]) = val;
len = sizeof(u16);
break;
case PT_FLAGS32:
case PT_MODE:
case PT_UINT32:
case PT_UID:
case PT_GID:
case PT_SIGSET:
*((u32 *)&data->buf[curoff_bounded]) = val;
len = sizeof(u32);
break;
case PT_RELTIME:
case PT_ABSTIME:
case PT_UINT64:
*((u64 *)&data->buf[curoff_bounded]) = val;
len = sizeof(u64);
break;
case PT_INT8:
*((s8 *)&data->buf[curoff_bounded]) = val;
len = sizeof(s8);
break;
case PT_INT16:
*((s16 *)&data->buf[curoff_bounded]) = val;
len = sizeof(s16);
break;
case PT_INT32:
*((s32 *)&data->buf[curoff_bounded]) = val;
len = sizeof(s32);
break;
case PT_INT64:
case PT_ERRNO:
case PT_FD:
case PT_PID:
*((s64 *)&data->buf[curoff_bounded]) = val;
len = sizeof(s64);
break;
default: {
bpf_printk("unhandled type in bpf_val_to_ring: evt_type %d, curarg %d, type %d\n",
data->state->tail_ctx.evt_type,
data->state->tail_ctx.curarg, type);
return PPM_FAILURE_BUG;
}
}
if (len_dyn + len > PPM_MAX_ARG_SIZE)
{
return PPM_FAILURE_FRAME_SCRATCH_MAP_FULL;
}
fixup_evt_arg_len(data->buf, data->state->tail_ctx.curarg, len_dyn + len);
data->state->tail_ctx.curoff += len;
data->state->tail_ctx.len += len;
data->curarg_already_on_frame = false;
++data->state->tail_ctx.curarg;
return PPM_SUCCESS;
}
static __always_inline int bpf_val_to_ring(struct filler_data *data,
unsigned long val)
{
const struct ppm_param_info *param_info;
if (data->state->tail_ctx.curarg >= PPM_MAX_EVENT_PARAMS) {
bpf_printk("invalid curarg: %d\n", data->state->tail_ctx.curarg);
return PPM_FAILURE_BUG;
}
param_info = &data->evt->params[data->state->tail_ctx.curarg & (PPM_MAX_EVENT_PARAMS - 1)];
return __bpf_val_to_ring(data, val, 0, param_info->type, -1, false);
}
static __always_inline int bpf_val_to_ring_len(struct filler_data *data,
unsigned long val,
unsigned long val_len)
{
const struct ppm_param_info *param_info;
if (data->state->tail_ctx.curarg >= PPM_MAX_EVENT_PARAMS) {
bpf_printk("invalid curarg: %d\n", data->state->tail_ctx.curarg);
return PPM_FAILURE_BUG;
}
param_info = &data->evt->params[data->state->tail_ctx.curarg & (PPM_MAX_EVENT_PARAMS - 1)];
return __bpf_val_to_ring(data, val, val_len, param_info->type, -1, false);
}
static __always_inline int bpf_val_to_ring_dyn(struct filler_data *data,
unsigned long val,
enum ppm_param_type type,
u8 dyn_idx)
{
return __bpf_val_to_ring(data, val, 0, type, dyn_idx, false);
}
static __always_inline int bpf_val_to_ring_type(struct filler_data *data,
unsigned long val,
enum ppm_param_type type)
{
return __bpf_val_to_ring(data, val, 0, type, -1, false);
}
static __always_inline bool bpf_in_ia32_syscall()
{
#if (defined(__i386__) || defined(__x86_64__) || defined(_M_IX86))
struct task_struct *task;
u32 status;
task = (struct task_struct *)bpf_get_current_task();
#if LINUX_VERSION_CODE < KERNEL_VERSION(4, 14, 18)
status = _READ(task->thread.status);
#elif LINUX_VERSION_CODE < KERNEL_VERSION(4, 15, 0)
status = _READ(task->thread_info.status);
#elif LINUX_VERSION_CODE < KERNEL_VERSION(4, 15, 2)
status = _READ(task->thread.status);
#else
status = _READ(task->thread_info.status);
#endif
return status & TS_COMPAT;
#else /* X86 */
return 0;
#endif /* X86 */
}
#endif
|