1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
/*
Copyright (C) 2021 The Falco Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#include "dns_manager.h"
void sinsp_dns_resolver::refresh(uint64_t erase_timeout, uint64_t base_refresh_timeout, uint64_t max_refresh_timeout, std::future<void> f_exit)
{
#if defined(HAS_CAPTURE) && !defined(CYGWING_AGENT) && !defined(_WIN32)
sinsp_dns_manager &manager = sinsp_dns_manager::get();
while(true)
{
if(!manager.m_cache.empty())
{
std::list<std::string> to_delete;
uint64_t ts = sinsp_utils::get_current_time_ns();
for(auto &it: manager.m_cache)
{
const std::string &name = it.first;
sinsp_dns_manager::dns_info &info = it.second;
if((ts > info.m_last_used_ts) &&
(ts - info.m_last_used_ts) > erase_timeout)
{
// remove the entry if it's hasn't been used for a whole hour
to_delete.push_back(name);
}
else if(ts > (info.m_last_resolve_ts + info.m_timeout))
{
sinsp_dns_manager::dns_info refreshed_info = manager.resolve(name, ts);
refreshed_info.m_timeout = base_refresh_timeout;
refreshed_info.m_last_resolve_ts = info.m_last_resolve_ts = ts;
// dns_info::operator!= will check if some
// v4 or v6 addresses are changed from the
// last resolution
if(refreshed_info != info)
{
info = refreshed_info;
}
else if(info.m_timeout < max_refresh_timeout)
{
// double the timeout until 320 secs
info.m_timeout <<= 1;
}
}
}
if(!to_delete.empty())
{
manager.m_erase_mutex.lock();
for(const auto &name : to_delete)
{
manager.m_cache.unsafe_erase(name);
}
manager.m_erase_mutex.unlock();
}
}
if(f_exit.wait_for(std::chrono::nanoseconds(base_refresh_timeout)) == std::future_status::ready)
{
break;
}
}
#endif
}
#if defined(HAS_CAPTURE) && !defined(CYGWING_AGENT) && !defined(_WIN32)
inline sinsp_dns_manager::dns_info sinsp_dns_manager::resolve(const std::string &name, uint64_t ts)
{
dns_info dinfo;
struct addrinfo hints, *result, *rp;
memset(&hints, 0, sizeof(struct addrinfo));
// Allow IPv4 or IPv6, all socket types, all protocols
hints.ai_family = AF_UNSPEC;
int s = getaddrinfo(name.c_str(), NULL, &hints, &result);
if (!s && result)
{
for (rp = result; rp != NULL; rp = rp->ai_next)
{
if(rp->ai_family == AF_INET)
{
dinfo.m_v4_addrs.insert(((struct sockaddr_in*)rp->ai_addr)->sin_addr.s_addr);
}
else // AF_INET6
{
ipv6addr v6;
memcpy(v6.m_b, ((struct sockaddr_in6*)rp->ai_addr)->sin6_addr.s6_addr, sizeof(ipv6addr));
dinfo.m_v6_addrs.insert(v6);
}
}
freeaddrinfo(result);
}
return dinfo;
}
#endif
bool sinsp_dns_manager::match(const char *name, int af, void *addr, uint64_t ts)
{
#if defined(HAS_CAPTURE) && !defined(CYGWING_AGENT) && !defined(_WIN32)
if(!m_resolver)
{
m_resolver = new thread(sinsp_dns_resolver::refresh, m_erase_timeout, m_base_refresh_timeout, m_max_refresh_timeout, m_exit_signal.get_future());
}
string sname = string(name);
m_erase_mutex.lock();
if(m_cache.find(sname) == m_cache.end())
{
dns_info dinfo = resolve(sname, ts);
dinfo.m_timeout = m_base_refresh_timeout;
dinfo.m_last_resolve_ts = ts;
m_cache[sname] = dinfo;
}
m_cache[sname].m_last_used_ts = ts;
dns_info &dinfo = m_cache[sname];
m_erase_mutex.unlock();
if(af == AF_INET6)
{
ipv6addr v6;
memcpy(v6.m_b, addr, sizeof(ipv6addr));
return dinfo.m_v6_addrs.find(v6) != dinfo.m_v6_addrs.end();
}
else if(af == AF_INET)
{
return dinfo.m_v4_addrs.find(*(uint32_t *)addr) != dinfo.m_v4_addrs.end();
}
#endif
return false;
}
string sinsp_dns_manager::name_of(int af, void *addr, uint64_t ts)
{
string ret;
#if defined(HAS_CAPTURE) && !defined(CYGWING_AGENT) && !defined(_WIN32)
if(!m_cache.empty())
{
m_erase_mutex.lock();
for(auto &it: m_cache)
{
const std::string &name = it.first;
sinsp_dns_manager::dns_info &info = it.second;
if(af == AF_INET6)
{
ipv6addr v6;
memcpy(v6.m_b, addr, sizeof(ipv6addr));
if (info.m_v6_addrs.find(v6) != info.m_v6_addrs.end())
{
info.m_last_used_ts = ts;
ret = name;
break;
}
}
else if(af == AF_INET && info.m_v4_addrs.find(*(uint32_t *)addr) != info.m_v4_addrs.end())
{
info.m_last_used_ts = ts;
ret = name;
break;
}
}
m_erase_mutex.unlock();
}
#endif
return ret;
}
void sinsp_dns_manager::cleanup()
{
if(m_resolver)
{
m_exit_signal.set_value();
m_resolver->join();
m_resolver = NULL;
m_exit_signal = std::promise<void>();
}
}
|