File: parse_number.h

package info (click to toggle)
fast-float 8.0.0-0.1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 872 kB
  • sloc: cpp: 6,819; ansic: 3,414; python: 366; sh: 37; makefile: 8
file content (399 lines) | stat: -rw-r--r-- 14,194 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
#ifndef FASTFLOAT_PARSE_NUMBER_H
#define FASTFLOAT_PARSE_NUMBER_H

#include "ascii_number.h"
#include "decimal_to_binary.h"
#include "digit_comparison.h"
#include "float_common.h"

#include <cmath>
#include <cstring>
#include <limits>
#include <system_error>

namespace fast_float {

namespace detail {
/**
 * Special case +inf, -inf, nan, infinity, -infinity.
 * The case comparisons could be made much faster given that we know that the
 * strings a null-free and fixed.
 **/
template <typename T, typename UC>
from_chars_result_t<UC>
    FASTFLOAT_CONSTEXPR14 parse_infnan(UC const *first, UC const *last,
                                       T &value, chars_format fmt) noexcept {
  from_chars_result_t<UC> answer{};
  answer.ptr = first;
  answer.ec = std::errc(); // be optimistic
  // assume first < last, so dereference without checks;
  bool const minusSign = (*first == UC('-'));
  // C++17 20.19.3.(7.1) explicitly forbids '+' sign here
  if ((*first == UC('-')) ||
      (uint64_t(fmt & chars_format::allow_leading_plus) &&
       (*first == UC('+')))) {
    ++first;
  }
  if (last - first >= 3) {
    if (fastfloat_strncasecmp(first, str_const_nan<UC>(), 3)) {
      answer.ptr = (first += 3);
      value = minusSign ? -std::numeric_limits<T>::quiet_NaN()
                        : std::numeric_limits<T>::quiet_NaN();
      // Check for possible nan(n-char-seq-opt), C++17 20.19.3.7,
      // C11 7.20.1.3.3. At least MSVC produces nan(ind) and nan(snan).
      if (first != last && *first == UC('(')) {
        for (UC const *ptr = first + 1; ptr != last; ++ptr) {
          if (*ptr == UC(')')) {
            answer.ptr = ptr + 1; // valid nan(n-char-seq-opt)
            break;
          } else if (!((UC('a') <= *ptr && *ptr <= UC('z')) ||
                       (UC('A') <= *ptr && *ptr <= UC('Z')) ||
                       (UC('0') <= *ptr && *ptr <= UC('9')) || *ptr == UC('_')))
            break; // forbidden char, not nan(n-char-seq-opt)
        }
      }
      return answer;
    }
    if (fastfloat_strncasecmp(first, str_const_inf<UC>(), 3)) {
      if ((last - first >= 8) &&
          fastfloat_strncasecmp(first + 3, str_const_inf<UC>() + 3, 5)) {
        answer.ptr = first + 8;
      } else {
        answer.ptr = first + 3;
      }
      value = minusSign ? -std::numeric_limits<T>::infinity()
                        : std::numeric_limits<T>::infinity();
      return answer;
    }
  }
  answer.ec = std::errc::invalid_argument;
  return answer;
}

/**
 * Returns true if the floating-pointing rounding mode is to 'nearest'.
 * It is the default on most system. This function is meant to be inexpensive.
 * Credit : @mwalcott3
 */
fastfloat_really_inline bool rounds_to_nearest() noexcept {
  // https://lemire.me/blog/2020/06/26/gcc-not-nearest/
#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0)
  return false;
#endif
  // See
  // A fast function to check your floating-point rounding mode
  // https://lemire.me/blog/2022/11/16/a-fast-function-to-check-your-floating-point-rounding-mode/
  //
  // This function is meant to be equivalent to :
  // prior: #include <cfenv>
  //  return fegetround() == FE_TONEAREST;
  // However, it is expected to be much faster than the fegetround()
  // function call.
  //
  // The volatile keyword prevents the compiler from computing the function
  // at compile-time.
  // There might be other ways to prevent compile-time optimizations (e.g.,
  // asm). The value does not need to be std::numeric_limits<float>::min(), any
  // small value so that 1 + x should round to 1 would do (after accounting for
  // excess precision, as in 387 instructions).
  static float volatile fmin = std::numeric_limits<float>::min();
  float fmini = fmin; // we copy it so that it gets loaded at most once.
//
// Explanation:
// Only when fegetround() == FE_TONEAREST do we have that
// fmin + 1.0f == 1.0f - fmin.
//
// FE_UPWARD:
//  fmin + 1.0f > 1
//  1.0f - fmin == 1
//
// FE_DOWNWARD or  FE_TOWARDZERO:
//  fmin + 1.0f == 1
//  1.0f - fmin < 1
//
// Note: This may fail to be accurate if fast-math has been
// enabled, as rounding conventions may not apply.
#ifdef FASTFLOAT_VISUAL_STUDIO
#pragma warning(push)
//  todo: is there a VS warning?
//  see
//  https://stackoverflow.com/questions/46079446/is-there-a-warning-for-floating-point-equality-checking-in-visual-studio-2013
#elif defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wfloat-equal"
#elif defined(__GNUC__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wfloat-equal"
#endif
  return (fmini + 1.0f == 1.0f - fmini);
#ifdef FASTFLOAT_VISUAL_STUDIO
#pragma warning(pop)
#elif defined(__clang__)
#pragma clang diagnostic pop
#elif defined(__GNUC__)
#pragma GCC diagnostic pop
#endif
}

} // namespace detail

template <typename T> struct from_chars_caller {
  template <typename UC>
  FASTFLOAT_CONSTEXPR20 static from_chars_result_t<UC>
  call(UC const *first, UC const *last, T &value,
       parse_options_t<UC> options) noexcept {
    return from_chars_advanced(first, last, value, options);
  }
};

#ifdef __STDCPP_FLOAT32_T__
template <> struct from_chars_caller<std::float32_t> {
  template <typename UC>
  FASTFLOAT_CONSTEXPR20 static from_chars_result_t<UC>
  call(UC const *first, UC const *last, std::float32_t &value,
       parse_options_t<UC> options) noexcept {
    // if std::float32_t is defined, and we are in C++23 mode; macro set for
    // float32; set value to float due to equivalence between float and
    // float32_t
    float val;
    auto ret = from_chars_advanced(first, last, val, options);
    value = val;
    return ret;
  }
};
#endif

#ifdef __STDCPP_FLOAT64_T__
template <> struct from_chars_caller<std::float64_t> {
  template <typename UC>
  FASTFLOAT_CONSTEXPR20 static from_chars_result_t<UC>
  call(UC const *first, UC const *last, std::float64_t &value,
       parse_options_t<UC> options) noexcept {
    // if std::float64_t is defined, and we are in C++23 mode; macro set for
    // float64; set value as double due to equivalence between double and
    // float64_t
    double val;
    auto ret = from_chars_advanced(first, last, val, options);
    value = val;
    return ret;
  }
};
#endif

template <typename T, typename UC, typename>
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
from_chars(UC const *first, UC const *last, T &value,
           chars_format fmt /*= chars_format::general*/) noexcept {
  return from_chars_caller<T>::call(first, last, value,
                                    parse_options_t<UC>(fmt));
}

/**
 * This function overload takes parsed_number_string_t structure that is created
 * and populated either by from_chars_advanced function taking chars range and
 * parsing options or other parsing custom function implemented by user.
 */
template <typename T, typename UC>
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
from_chars_advanced(parsed_number_string_t<UC> &pns, T &value) noexcept {

  static_assert(is_supported_float_type<T>::value,
                "only some floating-point types are supported");
  static_assert(is_supported_char_type<UC>::value,
                "only char, wchar_t, char16_t and char32_t are supported");

  from_chars_result_t<UC> answer;

  answer.ec = std::errc(); // be optimistic
  answer.ptr = pns.lastmatch;
  // The implementation of the Clinger's fast path is convoluted because
  // we want round-to-nearest in all cases, irrespective of the rounding mode
  // selected on the thread.
  // We proceed optimistically, assuming that detail::rounds_to_nearest()
  // returns true.
  if (binary_format<T>::min_exponent_fast_path() <= pns.exponent &&
      pns.exponent <= binary_format<T>::max_exponent_fast_path() &&
      !pns.too_many_digits) {
    // Unfortunately, the conventional Clinger's fast path is only possible
    // when the system rounds to the nearest float.
    //
    // We expect the next branch to almost always be selected.
    // We could check it first (before the previous branch), but
    // there might be performance advantages at having the check
    // be last.
    if (!cpp20_and_in_constexpr() && detail::rounds_to_nearest()) {
      // We have that fegetround() == FE_TONEAREST.
      // Next is Clinger's fast path.
      if (pns.mantissa <= binary_format<T>::max_mantissa_fast_path()) {
        value = T(pns.mantissa);
        if (pns.exponent < 0) {
          value = value / binary_format<T>::exact_power_of_ten(-pns.exponent);
        } else {
          value = value * binary_format<T>::exact_power_of_ten(pns.exponent);
        }
        if (pns.negative) {
          value = -value;
        }
        return answer;
      }
    } else {
      // We do not have that fegetround() == FE_TONEAREST.
      // Next is a modified Clinger's fast path, inspired by Jakub JelĂ­nek's
      // proposal
      if (pns.exponent >= 0 &&
          pns.mantissa <=
              binary_format<T>::max_mantissa_fast_path(pns.exponent)) {
#if defined(__clang__) || defined(FASTFLOAT_32BIT)
        // Clang may map 0 to -0.0 when fegetround() == FE_DOWNWARD
        if (pns.mantissa == 0) {
          value = pns.negative ? T(-0.) : T(0.);
          return answer;
        }
#endif
        value = T(pns.mantissa) *
                binary_format<T>::exact_power_of_ten(pns.exponent);
        if (pns.negative) {
          value = -value;
        }
        return answer;
      }
    }
  }
  adjusted_mantissa am =
      compute_float<binary_format<T>>(pns.exponent, pns.mantissa);
  if (pns.too_many_digits && am.power2 >= 0) {
    if (am != compute_float<binary_format<T>>(pns.exponent, pns.mantissa + 1)) {
      am = compute_error<binary_format<T>>(pns.exponent, pns.mantissa);
    }
  }
  // If we called compute_float<binary_format<T>>(pns.exponent, pns.mantissa)
  // and we have an invalid power (am.power2 < 0), then we need to go the long
  // way around again. This is very uncommon.
  if (am.power2 < 0) {
    am = digit_comp<T>(pns, am);
  }
  to_float(pns.negative, am, value);
  // Test for over/underflow.
  if ((pns.mantissa != 0 && am.mantissa == 0 && am.power2 == 0) ||
      am.power2 == binary_format<T>::infinite_power()) {
    answer.ec = std::errc::result_out_of_range;
  }
  return answer;
}

template <typename T, typename UC>
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
from_chars_float_advanced(UC const *first, UC const *last, T &value,
                          parse_options_t<UC> options) noexcept {

  static_assert(is_supported_float_type<T>::value,
                "only some floating-point types are supported");
  static_assert(is_supported_char_type<UC>::value,
                "only char, wchar_t, char16_t and char32_t are supported");

  chars_format const fmt = detail::adjust_for_feature_macros(options.format);

  from_chars_result_t<UC> answer;
  if (uint64_t(fmt & chars_format::skip_white_space)) {
    while ((first != last) && fast_float::is_space(*first)) {
      first++;
    }
  }
  if (first == last) {
    answer.ec = std::errc::invalid_argument;
    answer.ptr = first;
    return answer;
  }
  parsed_number_string_t<UC> pns =
      parse_number_string<UC>(first, last, options);
  if (!pns.valid) {
    if (uint64_t(fmt & chars_format::no_infnan)) {
      answer.ec = std::errc::invalid_argument;
      answer.ptr = first;
      return answer;
    } else {
      return detail::parse_infnan(first, last, value, fmt);
    }
  }

  // call overload that takes parsed_number_string_t directly.
  return from_chars_advanced(pns, value);
}

template <typename T, typename UC, typename>
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
from_chars(UC const *first, UC const *last, T &value, int base) noexcept {

  static_assert(is_supported_integer_type<T>::value,
                "only integer types are supported");
  static_assert(is_supported_char_type<UC>::value,
                "only char, wchar_t, char16_t and char32_t are supported");

  parse_options_t<UC> options;
  options.base = base;
  return from_chars_advanced(first, last, value, options);
}

template <typename T, typename UC>
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
from_chars_int_advanced(UC const *first, UC const *last, T &value,
                        parse_options_t<UC> options) noexcept {

  static_assert(is_supported_integer_type<T>::value,
                "only integer types are supported");
  static_assert(is_supported_char_type<UC>::value,
                "only char, wchar_t, char16_t and char32_t are supported");

  chars_format const fmt = detail::adjust_for_feature_macros(options.format);
  int const base = options.base;

  from_chars_result_t<UC> answer;
  if (uint64_t(fmt & chars_format::skip_white_space)) {
    while ((first != last) && fast_float::is_space(*first)) {
      first++;
    }
  }
  if (first == last || base < 2 || base > 36) {
    answer.ec = std::errc::invalid_argument;
    answer.ptr = first;
    return answer;
  }

  return parse_int_string(first, last, value, options);
}

template <size_t TypeIx> struct from_chars_advanced_caller {
  static_assert(TypeIx > 0, "unsupported type");
};

template <> struct from_chars_advanced_caller<1> {
  template <typename T, typename UC>
  FASTFLOAT_CONSTEXPR20 static from_chars_result_t<UC>
  call(UC const *first, UC const *last, T &value,
       parse_options_t<UC> options) noexcept {
    return from_chars_float_advanced(first, last, value, options);
  }
};

template <> struct from_chars_advanced_caller<2> {
  template <typename T, typename UC>
  FASTFLOAT_CONSTEXPR20 static from_chars_result_t<UC>
  call(UC const *first, UC const *last, T &value,
       parse_options_t<UC> options) noexcept {
    return from_chars_int_advanced(first, last, value, options);
  }
};

template <typename T, typename UC>
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
from_chars_advanced(UC const *first, UC const *last, T &value,
                    parse_options_t<UC> options) noexcept {
  return from_chars_advanced_caller<
      size_t(is_supported_float_type<T>::value) +
      2 * size_t(is_supported_integer_type<T>::value)>::call(first, last, value,
                                                             options);
}

} // namespace fast_float

#endif