File: annot_blast_btop4.py

package info (click to toggle)
fasta3 36.3.8i.14-Nov-2020-3
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 7,016 kB
  • sloc: ansic: 77,269; perl: 10,677; python: 2,461; sh: 428; csh: 86; sql: 55; makefile: 40
file content (685 lines) | stat: -rwxr-xr-x 27,067 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
#!/usr/bin/python3

################################################################
# copyright (c) 2017,2018 by William R. Pearson and The Rector &
# Visitors of the University of Virginia */
################################################################
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under this License is distributed on an "AS
# IS" BASIS, WITHOUT WRRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied.  See the License for the specific language
# governing permissions and limitations under the License. 
################################################################

################################################################
# annot_blast_btop4.py --query query.file --ann_script ann_pfam_www.pl --include_doms blast_tab_btop_file
################################################################
# annot_blast_btop4.py associates domain annotation information and
# subalignment scores with a blast tabular (-outfmt 6 or -outfmt 7)
# file that contains the raw score and the BTOP alignment encoding
# This file can be generated from "blastp/n" or "blast_formatter"
# using the command:
#   blast_formatter -archive blast_output.asn -outfmt '7 qseqid sseqid pident length mismatch gapopen qstart qend sstart send evalue bitscore score btop'  > blast_output.tab_annot
#
# If the BTOP field or query_file is not available, the script
# produces domain content without sub-alignment scores.
################################################################
## 2-Dec-2019
# added --have_qslen, --raw_score/--no_raw_score
# made more robust to multiple HSPs when using --ann_file
#
################################################################
## 4-Nov-2018
# add --include_doms, which adds a new field with the coordinates of
# the domains in the protein (independent of alignment)
#
################################################################
## 21-July-2018
# include sequence length (actually alignment end) to produce NODOM's (no NODOM's without length).
#
################################################################
## 13-Jan-2017
# modified to provide query/subject coordinates and identities if no
# query sequence -- does not decrement for reverse-complement fastx/blastx DNA
################################################################
## 16-Nov-2015
# modify to allow multi-query blast searches
################################################################
## 19-Dec-2015
# add -q_annot_script to annotate query sequence
#

import argparse
import fileinput
import sys
import re
import shutil
import subprocess
from math import log

# read lines of the form:
# gi|121694|sp|P20432.1|GSTT1_DROME	gi|121694|sp|P20432|GSTT1_DROME	100.00	209	0	0	1	209	1	209	6e-156	433	1113	209
# gi|121694|sp|P20432.1|GSTT1_DROME	gi|1170090|sp|P04907|GSTF3_MAIZE	26.77	198	123	7	4	185	6	197	2e-08	51.2	121	FL1YG ... 1NKRA1YW1
# gi|121694|sp|P20432.1|GSTT1_DROME	gi|81174731|sp|P0ACA5|SSPA_ECO57	39.66	58	32	2	43	100	49	103	8e-06	43.9	102	EDFLLI ... V-I-NEQS3FM
# gi|121694|sp|P20432.1|GSTT1_DROME	gi|121695|sp|P12653|GSTF1_MAIZE	27.62	181	107	7	32	203	34	199	9e-05	40.8	94	LI1LF ... N-1AS1CLLM1

# and report the domain content ala -m 8CC

def init_blosum62():

    # ncbi_blaa -- list of amino acids
    ncbi_blaa = "A R N D C Q E G H I L K M F P S T W Y V B Z X *".split(' ')

    # blosum62: 2D dict of scoring matrix values

    blosum62 = {}
    blosum62['A'] = dict(zip(ncbi_blaa,[ 4,-1,-2,-2, 0,-1,-1, 0,-2,-1,-1,-1,-1,-2,-1, 1, 0,-3,-2, 0,-2,-1, 0,-4]))
    blosum62['R'] = dict(zip(ncbi_blaa,[-1, 5, 0,-2,-3, 1, 0,-2, 0,-3,-2, 2,-1,-3,-2,-1,-1,-3,-2,-3,-1, 0,-1,-4]))
    blosum62['N'] = dict(zip(ncbi_blaa,[-2, 0, 6, 1,-3, 0, 0, 0, 1,-3,-3, 0,-2,-3,-2, 1, 0,-4,-2,-3, 3, 0,-1,-4]))
    blosum62['D'] = dict(zip(ncbi_blaa,[-2,-2, 1, 6,-3, 0, 2,-1,-1,-3,-4,-1,-3,-3,-1,0,-1,-4,-3,-3,4,1,-1,-4]))
    blosum62['C'] = dict(zip(ncbi_blaa,[ 0,-3,-3,-3, 9,-3,-4,-3,-3,-1,-1,-3,-1,-2,-3,-1,-1,-2,-2,-1,-3,-3,-2,-4]))
    blosum62['Q'] = dict(zip(ncbi_blaa,[-1, 1, 0, 0,-3, 5, 2,-2, 0,-3,-2,1,0,-3,-1,0,-1,-2,-1,-2,0,3,-1,-4]))
    blosum62['E'] = dict(zip(ncbi_blaa,[-1, 0, 0, 2,-4, 2, 5,-2, 0,-3,-3,1,-2,-3,-1,0,-1,-3,-2,-2,1,4,-1,-4]))
    blosum62['G'] = dict(zip(ncbi_blaa,[ 0,-2, 0,-1,-3,-2,-2, 6,-2,-4,-4,-2,-3,-3,-2,0,-2,-2,-3,-3,-1,-2,-1,-4]))
    blosum62['H'] = dict(zip(ncbi_blaa,[-2, 0, 1,-1,-3, 0, 0,-2, 8,-3,-3,-1,-2,-1,-2,-1,-2,-2,2,-3,0,0,-1,-4]))
    blosum62['I'] = dict(zip(ncbi_blaa,[-1,-3,-3,-3,-1,-3,-3,-4,-3,4,2,-3,1,0,-3,-2,-1,-3,-1,3,-3,-3,-1,-4]))
    blosum62['L'] = dict(zip(ncbi_blaa,[-1,-2,-3,-4,-1,-2,-3,-4,-3,2,4,-2,2,0,-3,-2,-1,-2,-1,1,-4,-3,-1,-4]))
    blosum62['K'] = dict(zip(ncbi_blaa,[-1, 2, 0,-1,-3, 1, 1,-2,-1,-3,-2,5,-1,-3,-1,0,-1,-3,-2,-2,0,1,-1,-4]))
    blosum62['M'] = dict(zip(ncbi_blaa,[-1,-1,-2,-3,-1, 0,-2,-3,-2,1,2,-1,5,0,-2,-1,-1,-1,-1,1,-3,-1,-1,-4]))
    blosum62['F'] = dict(zip(ncbi_blaa,[-2,-3,-3,-3,-2,-3,-3,-3,-1,0,0,-3,0,6,-4,-2,-2,1,3,-1,-3,-3,-1,-4]))
    blosum62['P'] = dict(zip(ncbi_blaa,[-1,-2,-2,-1,-3,-1,-1,-2,-2,-3,-3,-1,-2,-4,7,-1,-1,-4,-3,-2,-2,-1,-2,-4]))
    blosum62['S'] = dict(zip(ncbi_blaa,[ 1,-1, 1, 0,-1, 0, 0, 0,-1,-2,-2,0,-1,-2,-1,4,1,-3,-2,-2,0,0,0,-4]))
    blosum62['T'] = dict(zip(ncbi_blaa,[ 0,-1, 0,-1,-1,-1,-1,-2,-2,-1,-1,-1,-1,-2,-1,1,5,-2,-2,0,-1,-1,0,-4]))
    blosum62['W'] = dict(zip(ncbi_blaa,[-3 -3,-4,-4,-2,-2,-3,-2,-2,-3,-2,-3,-1,1,-4,-3,-2,11,2,-3,-4,-3,-2,-4]))
    blosum62['Y'] = dict(zip(ncbi_blaa,[-2,-2,-2,-3,-2,-1,-2,-3, 2,-1,-1,-2,-1,3,-3,-2,-2,2,7,-1,-3,-2,-1,-4]))
    blosum62['V'] = dict(zip(ncbi_blaa,[ 0,-3,-3,-3,-1,-2,-2,-3,-3,3,1,-2,1,-1,-2,-2,0,-3,-1,4,-3,-2,-1,-4]))
    blosum62['B'] = dict(zip(ncbi_blaa,[-2,-1, 3, 4,-3, 0, 1,-1, 0,-3,-4,0,-3,-3,-2,0,-1,-4,-3,-3, 4, 1,-1,-4]))
    blosum62['Z'] = dict(zip(ncbi_blaa,[-1, 0, 0, 1,-3, 3, 4,-2, 0,-3,-3,1,-1,-3,-1,0,-1,-3,-2,-2,1,4,-1,-4]))
    blosum62['X'] = dict(zip(ncbi_blaa,[ 0,-1,-1,-1,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-2,0,0,-2,-1,-1,-1,-1,-1,-4]))
    blosum62['*'] = dict(zip(ncbi_blaa,[-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,1]))

    if (len(blosum62.keys()) != len(ncbi_blaa)):
        sys.stderr.write(" blosum62 length mismatch %d != %d\n" %(len(blosum62), len(ncbi_blaa)))
        print(' '.join(ncbi_blaa),file=sys.stderr)
        print(' '.join(blosum62.keys()),file=sys.stderr)

        exit(1)
        
    blosum62_diag = {x:blosum62[x][x] for x in ncbi_blaa}

    return (blosum62, blosum62_diag, -11, -1)

################
# read_annots (\@hit_list)
# input: hit_entry['s_seq_id, etc'], target
# output: modified $hit_entry['domains']
#         modified $hit_entry['sites']
#
# extend to make robust to multiple hits on the same subject

def read_annots(Reader):

    target_set = {}

    current_domain = ""
    hit_ix = 0
    seq_domains = []
    seq_sites = []

    subj_domains = {}

    for line in Reader:
        if (line[0]=='='):
            continue

        line = line.strip("\n")

        # check for header
        if (line[0] == '>'):
            if (current_domain):  # previous domains/sites have already been found and parsed
                if (current_domain not in  target_set):
                    target_set[current_domain] = {}
                    target_set[current_domain]['domains'] = [ d for d in seq_domains ]  # previous domains
                    target_set[current_domain]['sites'] = [ s for s in seq_sites ]      # previous sites
                else:
                    sys.stderr.write("*** phase error: %s duplicate\n"%(current_domain))

            seq_domains = [];   # current domains
            seq_sites = [];     # current sites
            current_domain = line.split(' ')[0][1:]

        else:			# check for data
            a_fields = line.split('\t')
            a_fields[0]=int(a_fields[0])
            if (a_fields[1] == '-'):
                a_fields[2]=int(a_fields[2])
                annot_info = dict(zip(('d_pos','type','d_end','descr'), a_fields))
                re_df=re.compile(r' :(\d+)$')
                annot_info['descr'] =  re_df.sub(r'~\1',annot_info['descr'])
                seq_domains.append(annot_info)
            else:
                annot_info = dict(zip(('d_pos','type', 'd_val', 'descr', a_fields)))
                annot_info['d_end'] = annot_info['d_pos']
                seq_sites.append(annot_info)
    
    Reader.close()

    # get the last one
    if (current_domain):  # previous domains/sites have already been found and parsed
        if (current_domain not in  target_set):
            target_set[current_domain] = {}
            target_set[current_domain]['domains'] = [ d for d in seq_domains ]  # previous domains
            target_set[current_domain]['sites'] = [ s for s in seq_sites ]      # previous sites
        # else:
            # sys.stderr.write("*** phase error: %s duplicate\n"%(current_domain))

    return target_set

################
# merge_annots(hit_r):
#
# take different annotations in hit_r and put them in one list
#
def merge_annots(hit_r):
    merged_annots = []
    if ('q_aligned_domains' in hit_r):
        for annot in hit_r['q_aligned_domains']:
            annot['target']=1
            merged_annots.append(annot)

    if ('aligned_domains' in hit_r):
        for annot in hit_r['aligned_domains']:
            annot['target']=0
            merged_annots.append(annot)

    merged_annots = sorted(merged_annots, key=lambda x: x['qa_start'])

    return(merged_annots)


################
# get_file_annots(file_name)
#
def get_file_annots(file_name, hit_list):

    with open(file_name,'r') as Reader:
        ann_set = read_annots(Reader)

    return ann_set

################
# get_script_annots(script_name, hit_list)
#
# set up stdin/stdout pipe to send in hit list info and read results
#
def get_script_annots(script_name, hit_list, key_list):

    seq_set = {}

    proc = subprocess.Popen(script_name, stdin=subprocess.PIPE, stdout=subprocess.PIPE, shell=True, encoding='utf-8')

    for hit in hit_list:
        (seq_id, seq_len) = (hit[key_list[0]],hit[key_list[1]])
        if (seq_id not in seq_set):
            proc.stdin.write(("%s\t%s\n"%(seq_id,seq_len)))

    proc.stdin.close()

    while (proc.returncode is None):
        proc.poll()

    return read_annots(proc.stdout)

################
#
# link_annots(hit_list, annot_set)
#
# put 'domains' and 'sites' into each hit in the hit list
#
def link_annots(hit_list, annot_set):

    for hit in hit_list:
        seqid = hit['s_seq_id']
        if (seqid in annot_set):
            if ('domains' in annot_set[seqid]):
                hit['domains']=annot_set[seqid]['domains']
            if ('sites' in annot_set[seqid]):
                hit['sites']=annot_set[seqid]['sites']

# input: a blast BTOP string of the form: "1VA160TS7KG10RK27"
# returns a list_ref of tokens: (1, "VA", 60, "TS", 7, "KG, 10, "RK", 27)
#
def decode_btop(btop_str):

    tokens = re.split(r'(\d+)',btop_str)  # split with capture returns both strings between and separator (\d+)

    if not tokens[0]:
        tokens = tokens[1:]

    out_tokens = []

    for token in tokens:
        if re.match(r'\d+',token):
            out_tokens.append(token)
        else:
            mis_tokens = re.split(r'(..)',token)  # split with capture
            for mis in mis_tokens:
                if (mis):
                    out_tokens.append(mis)

    return out_tokens

def parse_query_lib(query_file):

    query_seqs = {}

    with open(query_file,"r") as qfd:
        header=''
        seq_data=''

        for line in qfd:
            line = line.strip("\n")
            
            if (line[0]=='>'):
                if (header):
                    # save existing sequence
                    seq_data = '' + seq_data
                    query_seqs[header]=seq_data

                header = line[1:].split(' ')[0]
            else:
                line = re.sub(r'[^A-Za-z]','',line)
                seq_data += line.upper()

    # save last entry
    if (header):
        query_seqs[header]=seq_data

    return query_seqs

# given: (1) a query sequence; (2) an encoded alignment; (3) a scoring matrix
# calculate:
# (1) the overall score
# (2) a per residue dictionary of scores and mappings from query -> subject
# (2) a per residue dictionary of scores and mappings from subject -> query
#
def alignment_score(query_r, hit, matrix_2d, matrix_diag, g_open, g_ext):

    query_start, subj_start = (int(hit['q_start']),int(hit['s_start']))
    btop_align_r = decode_btop(hit['BTOP'])
    hit['btop_align'] = btop_align_r

    q_map = []
    s_map = []

    gap0, gap1 = (0 ,0)

    q_ix = query_start - 1 # start from zero
    s_ix = subj_start - 1

    score, m_score = (0, 0)
    seq0, seq1 = ("","")

    for btop in btop_align_r:
        if (re.search(r'^\d+$',btop)):   # matching query sequence, add it up
            for i in  range(0,int(btop)):
                res = query_r[q_ix]
                score += matrix_diag[res]
                q_map.append({'s':score, 'y_ix':s_ix, 'res':res})
                s_map.append({'s':score, 'y_ix':q_ix, 'res':res})
                q_ix += 1
                s_ix += 1
        else:
            seq0, seq1 = (btop[0],btop[1])

            if (re.search(r'\-',btop)):  # is there a gap?
                if (seq0 == '-'):      # is it in query?
                    if gap0:             # are we in a gap?
                        score += g_ext
                    else:
                        score += g_open+g_ext
                        gap0 = True
                    # 'y_ix':-1 indicates alignment to gap
                    s_map.append({'s':score, 'y_ix':-1, 'res':seq1})
                    s_ix += 1
                else:			# gap is in subject
                    if gap1:
                        score += g_ext
                    else:
                        score += g_open+g_ext
                        gap1 = True
                    # 'y_ix':-1 indicates alignment to gap
                    q_map.append({'s':score, 'y_ix':-1, 'res':seq0})
                    q_ix += 1
            else:			# mismatch, not gap
                score += matrix_2d[seq0][seq1]
                gap1=gap0 = False
            
                q_map.append({'s':score, 'y_ix':s_ix, 'res':seq0})
                s_map.append({'s':score, 'y_ix':q_ix, 'res':seq1})

                q_ix += 1
                s_ix += 1

    return score, q_map, s_map

################################################################
# sub_alignment_stats -- calculate stats for ONE domain entry
# given x_map, xa_start, xa_end  where x=q/s depending on target
# domain_r : domain boundaries
# 
# calculate a score, identity and boundaries in both sequences and return values
#

def one_sub_alignment_stats(domain_r, x_map, y_map, xa_start, xa_end, ya_start, ya_end):

    td_start, td_end = (domain_r['d_pos'],domain_r['d_end'])

    if (td_end < xa_start or td_start > xa_end):
        return 0

    if (td_start < xa_start):
        td_start = xa_start

    if (td_end > xa_end):
        td_end = xa_end

    td_start -= xa_start
    td_end -= xa_start

    left_score = 0
    if (td_start>0) :
        left_score = x_map[td_start-1]['s']

    score = x_map[td_end]['s'] - left_score

    # map[] coordinates are 0-based
    # ya_start = x_map[td_start]['y_ix']+1
    # ya_end = x_map[td_end]['y_ix']+1

    #### identity calculation:
    n_len = 0
    n_id = 0
    for xi in range(td_start, td_end+1):
        this_x = x_map[xi]

        x_res=this_x['res']
        if (this_x['y_ix'] >= 0):
            n_len += 1
            y_res = y_map[this_x['y_ix']-ya_start+1]['res']
            if (x_res.upper() == y_res.upper()):
                n_id += 1

    ident = float(n_id)/float(n_len)

    return score, ident, td_start+xa_start-1, td_end+xa_start-1, x_map[td_start]['y_ix'], x_map[td_end]['y_ix']

################
# get domain scores, idents, boundaries for list of domains
#
def do_sub_alignment_stats(domain_list, x_map, y_map, xa_start, xa_end, ya_start, ya_end, keys_str):

    aligned_doms = []

    for domain in domain_list:
        subalign_data = one_sub_alignment_stats(domain, x_map, y_map, xa_start, xa_end, ya_start, ya_end)
        if (subalign_data and len(subalign_data)==6):
            sub_data = dict(zip(keys_str,subalign_data))
            for k in ('type','descr'):
                sub_data[k] = domain[k]
            aligned_doms.append(sub_data)

    return(aligned_doms)

####
# print raw domain info:
# |DX:%d-%d;C=dom_info|XD:%d-%d:C=dom_info
#
def format_dom_info(q_dom_r, dom_r):

    dom_str = ""
    for dom  in q_dom_r:
        dom_str += "|DX:%d-%d;C=%s"%(dom['d_pos'],dom['d_end'], dom['descr'])

    for dom  in dom_r:
        dom_str += "|XD:%d-%d;C=%s"%(dom['d_pos'],dom['d_end'], dom['descr'])

    return dom_str


def format_annot_info(annot_list_r, hit):

    annot_str = "";

    # two types of annotations, domains and sites.

    score_scale = hit['score']/hit['raw_score']

    for annot_r in (annot_list_r ):

        if (annot_r['type'] == '-'):
            fsub_score = annot_r['score']/hit['raw_score']

            ns_score, s_bit = (int(annot_r['score'] * score_scale + 0.5),
                               fsub_score * hit['bits'])

            qval = 0.0
            if (hit['evalue'] == 0.0):
                if (s_bit > 50.0):
                    qval = 3000.0
                else:
                    qval = -10.0 * (2.0*log(400.0) + s_bit)/log(10.0)
            else:
                qval = -10.0*log(hit['evalue'])*fsub_score/log(10.0)

            if qval < 0.0:
                qval = 0.0

            rx_str = 'XR'
            if (annot_r['target']):
                rx_str = "RX"
            annot_str += ';'.join(("|%s:%d-%d:%d-%d:s=%d"%(rx_str,
                                      annot_r['qa_start']+1,annot_r['qa_end']+1,
                                      annot_r['sa_start']+1,annot_r['sa_end']+1,ns_score),
                                   "b=%.1f"%(s_bit),"I=%.3f"%(annot_r['ident']),
                                   "Q=%.1f"%(qval),"C=%s"%(annot_r['descr'])))

        else:        # site annotation
            ann_type = annot_r['type'];
            site_str = "|%cX"%(ann_type)
            if (annot_r['target'] == 1):
                site_str = "|X%c"%(ann_type)
            elif (annot_r['target'] == 2):
                site_str = "|%c%c"%(ann_type, ann_type)

            annot_str += "%s:"%(site_str)
            annot_str += "%d%s%s%d%s"%(annot_r['qa_pos'], annot_r['q_res'], annot_r['m_symb'],
                                        annot_r['sa_pos'], annot_r['s_res'])

    return annot_str

def main(args):

    blosum62, blosum62_diag, g_open, g_ext = init_blosum62()

    if (args.query_file):
        # query_lib_r has a set of query sequences
        query_lib_r = parse_query_lib(args.query_file)
    else:
        sys.stderr.write("--query required\n")
        exit(1)

    tab_fields = "q_seqid s_seqid percid alen mismatch gopen q_start q_end s_start s_end evalue bits BTOP".split(' ')
    int_fields = "alen mismatch gopen q_start q_end s_start s_end".split(' ')
    float_fields = "percid evalue bits score".split(' ')

    if (args.have_qslen):
        tab_fields = "q_seqid q_len s_seqid s_len percid alen mismatch gopen q_start q_end s_start s_end evalue bits BTOP".split(' ')
        int_fields = "q_len s_len alen mismatch gopen q_start q_end s_start s_end".split(' ')

    # the fields that are displayed are listed here.  By default, all fields except score and BTOP are displayed.
    out_tab_fields = tab_fields[0:-1]
    in_tab_fields = tab_fields[0:-1]

    if (args.raw_out):
        out_tab_fields.append("raw_score")

    if (args.raw_in):
        in_tab_fields.append("score")

    ## always add BTOP
    in_tab_fields.append("BTOP")
    tab_fields = in_tab_fields

    if (args.out_fields):
        out_tab_fields = out_fields.split(" ")

    header_lines = []

    next_line = ""
    have_data = False

    hit_list = []
    q_hit_list = []

    for line in fileinput.input(args.files):
        if (line[0] == '#'):
            if (have_data):
                next_line = line
                have_data = False
                break
            else:
                header_lines.append(line)
            continue

        have_data = True
        line = line.strip('\n')
        if (line):
            this_data = dict(zip(tab_fields, line.split("\t")))
            for k in this_data.keys():
                if (k in int_fields):
                    this_data[k] = int(this_data[k])
                if (k in float_fields):
                    this_data[k] = float(this_data[k])
            hit_list.append(this_data)

    # get the query annotations
    q_hit_list = []
    if (args.q_ann_file):
        q_seqid = hit_list[0]['q_seqid']
        q_hit_list.append({'s_seq_id':q_seqid, 's_end':len(query_lib_r[q_seqid])})
        q_annots = get_file_annots(args.q_ann_file, q_hit_list)
        link_annots(q_hit_list, q_annots)

    elif (args.q_ann_script):
        args.q_ann_script = re.sub(r'\+',' ',args.q_ann_script)

        if (args.q_ann_script and shutil.which(args.q_ann_script.split(" ")[0])):
            q_seqid = hit_list[0]['q_seqid']
            q_hit_list.append({'s_seq_id':q_seqid, 's_end':len(query_lib_r[q_seqid])})
            q_annots = get_script_annots(args.q_ann_script, q_hit_list, ['s_seq_id','s_end'])
            link_annots(q_hit_list, q_annots)

    # get the subject annotations
    # first set up the list with sequence lengths
    if (args.ann_file or args.ann_script):
        s_len = 100000
        for hit in hit_list:
            hit['s_seq_id']=hit['s_seqid']
            if (not args.have_qslen):
                hit['s_end']=s_len
        
        if (args.ann_file):
            s_annots = get_file_annots(args.ann_file, hit_list)
            link_annots(hit_list, s_annots)
        elif (args.ann_script):
            args.ann_script = re.sub(r'\+',' ',args.ann_script)
            if (shutil.which(args.ann_script.split(" ")[0])):
                s_annots = get_script_annots(args.ann_script, hit_list,['s_seq_id','s_end'])
                link_annots(hit_list, s_annots)

    for line in header_lines:
        print(line, end='')

    header_lines = [next_line]

    # now get query annotation if available

    for hit in hit_list:
        list_covered = []

        # If I have an encoded aligment {BTOP} and a query sequence query_lib_r && query_lib_r[hit['q_seqid']]
        # then I can calculate sub-alignment scores
        if ('BTOP' in hit and query_lib_r and hit['q_seqid'] in query_lib_r):

            # calculate raw_score and mappings
            hit['raw_score'], q_map, s_map = alignment_score(query_lib_r[hit['q_seqid']],
                                                             hit,blosum62, blosum62_diag, g_open, g_ext)
            if ('score' not in hit):
                hit['score'] = hit['raw_score']

            # calculate sub-alignment scores in subject/library coordinates

            if ('domains' in hit and len(hit['domains'])>0):
                hit['aligned_domains'] = do_sub_alignment_stats(hit['domains'], s_map, q_map, hit['s_start'],hit['s_end'],hit['q_start'],hit['q_end'],
                                                                ('score','ident','sa_start', 'sa_end', 'qa_start', 'qa_end'))

            # calculate sub-alignment scores in query coordinates
            if (len(q_hit_list) > 0 and 'domains' in q_hit_list[0] and len(q_hit_list[0]['domains'])>0):
                hit['q_aligned_domains'] = do_sub_alignment_stats(q_hit_list[0]['domains'], q_map, s_map, hit['q_start'],hit['q_end'],hit['s_start'],hit['s_end'],
                                                                  ('score','ident','qa_start', 'qa_end', 'sa_start', 'sa_end'))
        ################
        ## final output display

        print("\t".join([str(hit[x]) for x in out_tab_fields]),end='') # show fields from original blast tabular file

        merged_annots_r = merge_annots(hit)                # merge the four possible annotation lists into one.

        if (len(merged_annots_r)>0):
            print("\t"+format_annot_info(merged_annots_r, hit),end='')
            if (args.dom_info):
                if (len(q_hit_list) > 0 and 'domains' in q_hit_list[0]):
                    print("\t"+format_dom_info(q_hit_list[0]['domains'], hit['domains']),end='')
                else:
                    print("\t"+format_dom_info([], hit['domains']),end='')
        elif (len(list_covered)>0):
            print("\t" + ";".join(list_covered))
            if (args.dom_info):
                print("\t"+format_dom_info(q_hit_list[0]['domains'], hit['domains']),end='')
        print()

    for line in header_lines:
        print(line,end="")


if __name__ == '__main__':

    print('# ' + ' '.join(sys.argv))

    parser=argparse.ArgumentParser(description='annot_blast_btop4.py : annotate blast tabular format with BTOP ')
    # not implemented
    # parser.add_argument('--matrix', help='scoring matrix',dest='matrix',action='store',default='BL62')
    parser.add_argument('--ann_script', help='script for subject annotations',dest='ann_script',action='store')
    parser.add_argument('--q_ann_script', help='script for query annotations',dest='q_ann_script',action='store')
    parser.add_argument('--ann_file', help='subject annotation file',dest='ann_file',action='store')
    parser.add_argument('--q_ann_file', help='query annotation file',dest='q_ann_file',action='store')
    parser.add_argument('--have_qslen', help='query/subject lenghts in tab file',dest='have_qslen',action='store_true',default=False)
    parser.add_argument('--dom_info', help='show unaligned domain coordinates',dest='dom_info',action='store_true',default=False)
    parser.add_argument('--sub2query', help='get query annots from self-subject',dest='sub_query',action='store_true',default=False)
    parser.add_argument('--query', help='file of query sequences',dest='query_file',action='store')
    parser.add_argument('--out_fields', help='names/order of output fields',dest='out_fields',action='store')
    parser.add_argument('--raw_score', help='raw score after bit score',dest='raw_in',action='store_true',default=True)
    parser.add_argument('--no_raw_score', help='raw score after bit score',dest='raw_in',action='store_false', default=True)
    parser.add_argument('--no-raw_score', help='raw score after bit score',dest='raw_in',action='store_false', default=True)
    parser.add_argument('--raw_score_out', help='display raw score',dest='raw_out',action='store_true',default=False)
    parser.add_argument('files', metavar='FILE', help='Blast tabular BTOP files to read', nargs='*')

    args=parser.parse_args()

    main(args)