1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
|
#!/usr/bin/python3
################################################################
# copyright (c) 2017,2018 by William R. Pearson and The Rector &
# Visitors of the University of Virginia */
################################################################
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under this License is distributed on an "AS
# IS" BASIS, WITHOUT WRRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language
# governing permissions and limitations under the License.
################################################################
################################################################
# annot_blast_btop4.py --query query.file --ann_script ann_pfam_www.pl --include_doms blast_tab_btop_file
################################################################
# annot_blast_btop4.py associates domain annotation information and
# subalignment scores with a blast tabular (-outfmt 6 or -outfmt 7)
# file that contains the raw score and the BTOP alignment encoding
# This file can be generated from "blastp/n" or "blast_formatter"
# using the command:
# blast_formatter -archive blast_output.asn -outfmt '7 qseqid sseqid pident length mismatch gapopen qstart qend sstart send evalue bitscore score btop' > blast_output.tab_annot
#
# If the BTOP field or query_file is not available, the script
# produces domain content without sub-alignment scores.
################################################################
## 2-Dec-2019
# added --have_qslen, --raw_score/--no_raw_score
# made more robust to multiple HSPs when using --ann_file
#
################################################################
## 4-Nov-2018
# add --include_doms, which adds a new field with the coordinates of
# the domains in the protein (independent of alignment)
#
################################################################
## 21-July-2018
# include sequence length (actually alignment end) to produce NODOM's (no NODOM's without length).
#
################################################################
## 13-Jan-2017
# modified to provide query/subject coordinates and identities if no
# query sequence -- does not decrement for reverse-complement fastx/blastx DNA
################################################################
## 16-Nov-2015
# modify to allow multi-query blast searches
################################################################
## 19-Dec-2015
# add -q_annot_script to annotate query sequence
#
import argparse
import fileinput
import sys
import re
import shutil
import subprocess
from math import log
# read lines of the form:
# gi|121694|sp|P20432.1|GSTT1_DROME gi|121694|sp|P20432|GSTT1_DROME 100.00 209 0 0 1 209 1 209 6e-156 433 1113 209
# gi|121694|sp|P20432.1|GSTT1_DROME gi|1170090|sp|P04907|GSTF3_MAIZE 26.77 198 123 7 4 185 6 197 2e-08 51.2 121 FL1YG ... 1NKRA1YW1
# gi|121694|sp|P20432.1|GSTT1_DROME gi|81174731|sp|P0ACA5|SSPA_ECO57 39.66 58 32 2 43 100 49 103 8e-06 43.9 102 EDFLLI ... V-I-NEQS3FM
# gi|121694|sp|P20432.1|GSTT1_DROME gi|121695|sp|P12653|GSTF1_MAIZE 27.62 181 107 7 32 203 34 199 9e-05 40.8 94 LI1LF ... N-1AS1CLLM1
# and report the domain content ala -m 8CC
def init_blosum62():
# ncbi_blaa -- list of amino acids
ncbi_blaa = "A R N D C Q E G H I L K M F P S T W Y V B Z X *".split(' ')
# blosum62: 2D dict of scoring matrix values
blosum62 = {}
blosum62['A'] = dict(zip(ncbi_blaa,[ 4,-1,-2,-2, 0,-1,-1, 0,-2,-1,-1,-1,-1,-2,-1, 1, 0,-3,-2, 0,-2,-1, 0,-4]))
blosum62['R'] = dict(zip(ncbi_blaa,[-1, 5, 0,-2,-3, 1, 0,-2, 0,-3,-2, 2,-1,-3,-2,-1,-1,-3,-2,-3,-1, 0,-1,-4]))
blosum62['N'] = dict(zip(ncbi_blaa,[-2, 0, 6, 1,-3, 0, 0, 0, 1,-3,-3, 0,-2,-3,-2, 1, 0,-4,-2,-3, 3, 0,-1,-4]))
blosum62['D'] = dict(zip(ncbi_blaa,[-2,-2, 1, 6,-3, 0, 2,-1,-1,-3,-4,-1,-3,-3,-1,0,-1,-4,-3,-3,4,1,-1,-4]))
blosum62['C'] = dict(zip(ncbi_blaa,[ 0,-3,-3,-3, 9,-3,-4,-3,-3,-1,-1,-3,-1,-2,-3,-1,-1,-2,-2,-1,-3,-3,-2,-4]))
blosum62['Q'] = dict(zip(ncbi_blaa,[-1, 1, 0, 0,-3, 5, 2,-2, 0,-3,-2,1,0,-3,-1,0,-1,-2,-1,-2,0,3,-1,-4]))
blosum62['E'] = dict(zip(ncbi_blaa,[-1, 0, 0, 2,-4, 2, 5,-2, 0,-3,-3,1,-2,-3,-1,0,-1,-3,-2,-2,1,4,-1,-4]))
blosum62['G'] = dict(zip(ncbi_blaa,[ 0,-2, 0,-1,-3,-2,-2, 6,-2,-4,-4,-2,-3,-3,-2,0,-2,-2,-3,-3,-1,-2,-1,-4]))
blosum62['H'] = dict(zip(ncbi_blaa,[-2, 0, 1,-1,-3, 0, 0,-2, 8,-3,-3,-1,-2,-1,-2,-1,-2,-2,2,-3,0,0,-1,-4]))
blosum62['I'] = dict(zip(ncbi_blaa,[-1,-3,-3,-3,-1,-3,-3,-4,-3,4,2,-3,1,0,-3,-2,-1,-3,-1,3,-3,-3,-1,-4]))
blosum62['L'] = dict(zip(ncbi_blaa,[-1,-2,-3,-4,-1,-2,-3,-4,-3,2,4,-2,2,0,-3,-2,-1,-2,-1,1,-4,-3,-1,-4]))
blosum62['K'] = dict(zip(ncbi_blaa,[-1, 2, 0,-1,-3, 1, 1,-2,-1,-3,-2,5,-1,-3,-1,0,-1,-3,-2,-2,0,1,-1,-4]))
blosum62['M'] = dict(zip(ncbi_blaa,[-1,-1,-2,-3,-1, 0,-2,-3,-2,1,2,-1,5,0,-2,-1,-1,-1,-1,1,-3,-1,-1,-4]))
blosum62['F'] = dict(zip(ncbi_blaa,[-2,-3,-3,-3,-2,-3,-3,-3,-1,0,0,-3,0,6,-4,-2,-2,1,3,-1,-3,-3,-1,-4]))
blosum62['P'] = dict(zip(ncbi_blaa,[-1,-2,-2,-1,-3,-1,-1,-2,-2,-3,-3,-1,-2,-4,7,-1,-1,-4,-3,-2,-2,-1,-2,-4]))
blosum62['S'] = dict(zip(ncbi_blaa,[ 1,-1, 1, 0,-1, 0, 0, 0,-1,-2,-2,0,-1,-2,-1,4,1,-3,-2,-2,0,0,0,-4]))
blosum62['T'] = dict(zip(ncbi_blaa,[ 0,-1, 0,-1,-1,-1,-1,-2,-2,-1,-1,-1,-1,-2,-1,1,5,-2,-2,0,-1,-1,0,-4]))
blosum62['W'] = dict(zip(ncbi_blaa,[-3 -3,-4,-4,-2,-2,-3,-2,-2,-3,-2,-3,-1,1,-4,-3,-2,11,2,-3,-4,-3,-2,-4]))
blosum62['Y'] = dict(zip(ncbi_blaa,[-2,-2,-2,-3,-2,-1,-2,-3, 2,-1,-1,-2,-1,3,-3,-2,-2,2,7,-1,-3,-2,-1,-4]))
blosum62['V'] = dict(zip(ncbi_blaa,[ 0,-3,-3,-3,-1,-2,-2,-3,-3,3,1,-2,1,-1,-2,-2,0,-3,-1,4,-3,-2,-1,-4]))
blosum62['B'] = dict(zip(ncbi_blaa,[-2,-1, 3, 4,-3, 0, 1,-1, 0,-3,-4,0,-3,-3,-2,0,-1,-4,-3,-3, 4, 1,-1,-4]))
blosum62['Z'] = dict(zip(ncbi_blaa,[-1, 0, 0, 1,-3, 3, 4,-2, 0,-3,-3,1,-1,-3,-1,0,-1,-3,-2,-2,1,4,-1,-4]))
blosum62['X'] = dict(zip(ncbi_blaa,[ 0,-1,-1,-1,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-2,0,0,-2,-1,-1,-1,-1,-1,-4]))
blosum62['*'] = dict(zip(ncbi_blaa,[-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,1]))
if (len(blosum62.keys()) != len(ncbi_blaa)):
sys.stderr.write(" blosum62 length mismatch %d != %d\n" %(len(blosum62), len(ncbi_blaa)))
print(' '.join(ncbi_blaa),file=sys.stderr)
print(' '.join(blosum62.keys()),file=sys.stderr)
exit(1)
blosum62_diag = {x:blosum62[x][x] for x in ncbi_blaa}
return (blosum62, blosum62_diag, -11, -1)
################
# read_annots (\@hit_list)
# input: hit_entry['s_seq_id, etc'], target
# output: modified $hit_entry['domains']
# modified $hit_entry['sites']
#
# extend to make robust to multiple hits on the same subject
def read_annots(Reader):
target_set = {}
current_domain = ""
hit_ix = 0
seq_domains = []
seq_sites = []
subj_domains = {}
for line in Reader:
if (line[0]=='='):
continue
line = line.strip("\n")
# check for header
if (line[0] == '>'):
if (current_domain): # previous domains/sites have already been found and parsed
if (current_domain not in target_set):
target_set[current_domain] = {}
target_set[current_domain]['domains'] = [ d for d in seq_domains ] # previous domains
target_set[current_domain]['sites'] = [ s for s in seq_sites ] # previous sites
else:
sys.stderr.write("*** phase error: %s duplicate\n"%(current_domain))
seq_domains = []; # current domains
seq_sites = []; # current sites
current_domain = line.split(' ')[0][1:]
else: # check for data
a_fields = line.split('\t')
a_fields[0]=int(a_fields[0])
if (a_fields[1] == '-'):
a_fields[2]=int(a_fields[2])
annot_info = dict(zip(('d_pos','type','d_end','descr'), a_fields))
re_df=re.compile(r' :(\d+)$')
annot_info['descr'] = re_df.sub(r'~\1',annot_info['descr'])
seq_domains.append(annot_info)
else:
annot_info = dict(zip(('d_pos','type', 'd_val', 'descr', a_fields)))
annot_info['d_end'] = annot_info['d_pos']
seq_sites.append(annot_info)
Reader.close()
# get the last one
if (current_domain): # previous domains/sites have already been found and parsed
if (current_domain not in target_set):
target_set[current_domain] = {}
target_set[current_domain]['domains'] = [ d for d in seq_domains ] # previous domains
target_set[current_domain]['sites'] = [ s for s in seq_sites ] # previous sites
# else:
# sys.stderr.write("*** phase error: %s duplicate\n"%(current_domain))
return target_set
################
# merge_annots(hit_r):
#
# take different annotations in hit_r and put them in one list
#
def merge_annots(hit_r):
merged_annots = []
if ('q_aligned_domains' in hit_r):
for annot in hit_r['q_aligned_domains']:
annot['target']=1
merged_annots.append(annot)
if ('aligned_domains' in hit_r):
for annot in hit_r['aligned_domains']:
annot['target']=0
merged_annots.append(annot)
merged_annots = sorted(merged_annots, key=lambda x: x['qa_start'])
return(merged_annots)
################
# get_file_annots(file_name)
#
def get_file_annots(file_name, hit_list):
with open(file_name,'r') as Reader:
ann_set = read_annots(Reader)
return ann_set
################
# get_script_annots(script_name, hit_list)
#
# set up stdin/stdout pipe to send in hit list info and read results
#
def get_script_annots(script_name, hit_list, key_list):
seq_set = {}
proc = subprocess.Popen(script_name, stdin=subprocess.PIPE, stdout=subprocess.PIPE, shell=True, encoding='utf-8')
for hit in hit_list:
(seq_id, seq_len) = (hit[key_list[0]],hit[key_list[1]])
if (seq_id not in seq_set):
proc.stdin.write(("%s\t%s\n"%(seq_id,seq_len)))
proc.stdin.close()
while (proc.returncode is None):
proc.poll()
return read_annots(proc.stdout)
################
#
# link_annots(hit_list, annot_set)
#
# put 'domains' and 'sites' into each hit in the hit list
#
def link_annots(hit_list, annot_set):
for hit in hit_list:
seqid = hit['s_seq_id']
if (seqid in annot_set):
if ('domains' in annot_set[seqid]):
hit['domains']=annot_set[seqid]['domains']
if ('sites' in annot_set[seqid]):
hit['sites']=annot_set[seqid]['sites']
# input: a blast BTOP string of the form: "1VA160TS7KG10RK27"
# returns a list_ref of tokens: (1, "VA", 60, "TS", 7, "KG, 10, "RK", 27)
#
def decode_btop(btop_str):
tokens = re.split(r'(\d+)',btop_str) # split with capture returns both strings between and separator (\d+)
if not tokens[0]:
tokens = tokens[1:]
out_tokens = []
for token in tokens:
if re.match(r'\d+',token):
out_tokens.append(token)
else:
mis_tokens = re.split(r'(..)',token) # split with capture
for mis in mis_tokens:
if (mis):
out_tokens.append(mis)
return out_tokens
def parse_query_lib(query_file):
query_seqs = {}
with open(query_file,"r") as qfd:
header=''
seq_data=''
for line in qfd:
line = line.strip("\n")
if (line[0]=='>'):
if (header):
# save existing sequence
seq_data = '' + seq_data
query_seqs[header]=seq_data
header = line[1:].split(' ')[0]
else:
line = re.sub(r'[^A-Za-z]','',line)
seq_data += line.upper()
# save last entry
if (header):
query_seqs[header]=seq_data
return query_seqs
# given: (1) a query sequence; (2) an encoded alignment; (3) a scoring matrix
# calculate:
# (1) the overall score
# (2) a per residue dictionary of scores and mappings from query -> subject
# (2) a per residue dictionary of scores and mappings from subject -> query
#
def alignment_score(query_r, hit, matrix_2d, matrix_diag, g_open, g_ext):
query_start, subj_start = (int(hit['q_start']),int(hit['s_start']))
btop_align_r = decode_btop(hit['BTOP'])
hit['btop_align'] = btop_align_r
q_map = []
s_map = []
gap0, gap1 = (0 ,0)
q_ix = query_start - 1 # start from zero
s_ix = subj_start - 1
score, m_score = (0, 0)
seq0, seq1 = ("","")
for btop in btop_align_r:
if (re.search(r'^\d+$',btop)): # matching query sequence, add it up
for i in range(0,int(btop)):
res = query_r[q_ix]
score += matrix_diag[res]
q_map.append({'s':score, 'y_ix':s_ix, 'res':res})
s_map.append({'s':score, 'y_ix':q_ix, 'res':res})
q_ix += 1
s_ix += 1
else:
seq0, seq1 = (btop[0],btop[1])
if (re.search(r'\-',btop)): # is there a gap?
if (seq0 == '-'): # is it in query?
if gap0: # are we in a gap?
score += g_ext
else:
score += g_open+g_ext
gap0 = True
# 'y_ix':-1 indicates alignment to gap
s_map.append({'s':score, 'y_ix':-1, 'res':seq1})
s_ix += 1
else: # gap is in subject
if gap1:
score += g_ext
else:
score += g_open+g_ext
gap1 = True
# 'y_ix':-1 indicates alignment to gap
q_map.append({'s':score, 'y_ix':-1, 'res':seq0})
q_ix += 1
else: # mismatch, not gap
score += matrix_2d[seq0][seq1]
gap1=gap0 = False
q_map.append({'s':score, 'y_ix':s_ix, 'res':seq0})
s_map.append({'s':score, 'y_ix':q_ix, 'res':seq1})
q_ix += 1
s_ix += 1
return score, q_map, s_map
################################################################
# sub_alignment_stats -- calculate stats for ONE domain entry
# given x_map, xa_start, xa_end where x=q/s depending on target
# domain_r : domain boundaries
#
# calculate a score, identity and boundaries in both sequences and return values
#
def one_sub_alignment_stats(domain_r, x_map, y_map, xa_start, xa_end, ya_start, ya_end):
td_start, td_end = (domain_r['d_pos'],domain_r['d_end'])
if (td_end < xa_start or td_start > xa_end):
return 0
if (td_start < xa_start):
td_start = xa_start
if (td_end > xa_end):
td_end = xa_end
td_start -= xa_start
td_end -= xa_start
left_score = 0
if (td_start>0) :
left_score = x_map[td_start-1]['s']
score = x_map[td_end]['s'] - left_score
# map[] coordinates are 0-based
# ya_start = x_map[td_start]['y_ix']+1
# ya_end = x_map[td_end]['y_ix']+1
#### identity calculation:
n_len = 0
n_id = 0
for xi in range(td_start, td_end+1):
this_x = x_map[xi]
x_res=this_x['res']
if (this_x['y_ix'] >= 0):
n_len += 1
y_res = y_map[this_x['y_ix']-ya_start+1]['res']
if (x_res.upper() == y_res.upper()):
n_id += 1
ident = float(n_id)/float(n_len)
return score, ident, td_start+xa_start-1, td_end+xa_start-1, x_map[td_start]['y_ix'], x_map[td_end]['y_ix']
################
# get domain scores, idents, boundaries for list of domains
#
def do_sub_alignment_stats(domain_list, x_map, y_map, xa_start, xa_end, ya_start, ya_end, keys_str):
aligned_doms = []
for domain in domain_list:
subalign_data = one_sub_alignment_stats(domain, x_map, y_map, xa_start, xa_end, ya_start, ya_end)
if (subalign_data and len(subalign_data)==6):
sub_data = dict(zip(keys_str,subalign_data))
for k in ('type','descr'):
sub_data[k] = domain[k]
aligned_doms.append(sub_data)
return(aligned_doms)
####
# print raw domain info:
# |DX:%d-%d;C=dom_info|XD:%d-%d:C=dom_info
#
def format_dom_info(q_dom_r, dom_r):
dom_str = ""
for dom in q_dom_r:
dom_str += "|DX:%d-%d;C=%s"%(dom['d_pos'],dom['d_end'], dom['descr'])
for dom in dom_r:
dom_str += "|XD:%d-%d;C=%s"%(dom['d_pos'],dom['d_end'], dom['descr'])
return dom_str
def format_annot_info(annot_list_r, hit):
annot_str = "";
# two types of annotations, domains and sites.
score_scale = hit['score']/hit['raw_score']
for annot_r in (annot_list_r ):
if (annot_r['type'] == '-'):
fsub_score = annot_r['score']/hit['raw_score']
ns_score, s_bit = (int(annot_r['score'] * score_scale + 0.5),
fsub_score * hit['bits'])
qval = 0.0
if (hit['evalue'] == 0.0):
if (s_bit > 50.0):
qval = 3000.0
else:
qval = -10.0 * (2.0*log(400.0) + s_bit)/log(10.0)
else:
qval = -10.0*log(hit['evalue'])*fsub_score/log(10.0)
if qval < 0.0:
qval = 0.0
rx_str = 'XR'
if (annot_r['target']):
rx_str = "RX"
annot_str += ';'.join(("|%s:%d-%d:%d-%d:s=%d"%(rx_str,
annot_r['qa_start']+1,annot_r['qa_end']+1,
annot_r['sa_start']+1,annot_r['sa_end']+1,ns_score),
"b=%.1f"%(s_bit),"I=%.3f"%(annot_r['ident']),
"Q=%.1f"%(qval),"C=%s"%(annot_r['descr'])))
else: # site annotation
ann_type = annot_r['type'];
site_str = "|%cX"%(ann_type)
if (annot_r['target'] == 1):
site_str = "|X%c"%(ann_type)
elif (annot_r['target'] == 2):
site_str = "|%c%c"%(ann_type, ann_type)
annot_str += "%s:"%(site_str)
annot_str += "%d%s%s%d%s"%(annot_r['qa_pos'], annot_r['q_res'], annot_r['m_symb'],
annot_r['sa_pos'], annot_r['s_res'])
return annot_str
def main(args):
blosum62, blosum62_diag, g_open, g_ext = init_blosum62()
if (args.query_file):
# query_lib_r has a set of query sequences
query_lib_r = parse_query_lib(args.query_file)
else:
sys.stderr.write("--query required\n")
exit(1)
tab_fields = "q_seqid s_seqid percid alen mismatch gopen q_start q_end s_start s_end evalue bits BTOP".split(' ')
int_fields = "alen mismatch gopen q_start q_end s_start s_end".split(' ')
float_fields = "percid evalue bits score".split(' ')
if (args.have_qslen):
tab_fields = "q_seqid q_len s_seqid s_len percid alen mismatch gopen q_start q_end s_start s_end evalue bits BTOP".split(' ')
int_fields = "q_len s_len alen mismatch gopen q_start q_end s_start s_end".split(' ')
# the fields that are displayed are listed here. By default, all fields except score and BTOP are displayed.
out_tab_fields = tab_fields[0:-1]
in_tab_fields = tab_fields[0:-1]
if (args.raw_out):
out_tab_fields.append("raw_score")
if (args.raw_in):
in_tab_fields.append("score")
## always add BTOP
in_tab_fields.append("BTOP")
tab_fields = in_tab_fields
if (args.out_fields):
out_tab_fields = out_fields.split(" ")
header_lines = []
next_line = ""
have_data = False
hit_list = []
q_hit_list = []
for line in fileinput.input(args.files):
if (line[0] == '#'):
if (have_data):
next_line = line
have_data = False
break
else:
header_lines.append(line)
continue
have_data = True
line = line.strip('\n')
if (line):
this_data = dict(zip(tab_fields, line.split("\t")))
for k in this_data.keys():
if (k in int_fields):
this_data[k] = int(this_data[k])
if (k in float_fields):
this_data[k] = float(this_data[k])
hit_list.append(this_data)
# get the query annotations
q_hit_list = []
if (args.q_ann_file):
q_seqid = hit_list[0]['q_seqid']
q_hit_list.append({'s_seq_id':q_seqid, 's_end':len(query_lib_r[q_seqid])})
q_annots = get_file_annots(args.q_ann_file, q_hit_list)
link_annots(q_hit_list, q_annots)
elif (args.q_ann_script):
args.q_ann_script = re.sub(r'\+',' ',args.q_ann_script)
if (args.q_ann_script and shutil.which(args.q_ann_script.split(" ")[0])):
q_seqid = hit_list[0]['q_seqid']
q_hit_list.append({'s_seq_id':q_seqid, 's_end':len(query_lib_r[q_seqid])})
q_annots = get_script_annots(args.q_ann_script, q_hit_list, ['s_seq_id','s_end'])
link_annots(q_hit_list, q_annots)
# get the subject annotations
# first set up the list with sequence lengths
if (args.ann_file or args.ann_script):
s_len = 100000
for hit in hit_list:
hit['s_seq_id']=hit['s_seqid']
if (not args.have_qslen):
hit['s_end']=s_len
if (args.ann_file):
s_annots = get_file_annots(args.ann_file, hit_list)
link_annots(hit_list, s_annots)
elif (args.ann_script):
args.ann_script = re.sub(r'\+',' ',args.ann_script)
if (shutil.which(args.ann_script.split(" ")[0])):
s_annots = get_script_annots(args.ann_script, hit_list,['s_seq_id','s_end'])
link_annots(hit_list, s_annots)
for line in header_lines:
print(line, end='')
header_lines = [next_line]
# now get query annotation if available
for hit in hit_list:
list_covered = []
# If I have an encoded aligment {BTOP} and a query sequence query_lib_r && query_lib_r[hit['q_seqid']]
# then I can calculate sub-alignment scores
if ('BTOP' in hit and query_lib_r and hit['q_seqid'] in query_lib_r):
# calculate raw_score and mappings
hit['raw_score'], q_map, s_map = alignment_score(query_lib_r[hit['q_seqid']],
hit,blosum62, blosum62_diag, g_open, g_ext)
if ('score' not in hit):
hit['score'] = hit['raw_score']
# calculate sub-alignment scores in subject/library coordinates
if ('domains' in hit and len(hit['domains'])>0):
hit['aligned_domains'] = do_sub_alignment_stats(hit['domains'], s_map, q_map, hit['s_start'],hit['s_end'],hit['q_start'],hit['q_end'],
('score','ident','sa_start', 'sa_end', 'qa_start', 'qa_end'))
# calculate sub-alignment scores in query coordinates
if (len(q_hit_list) > 0 and 'domains' in q_hit_list[0] and len(q_hit_list[0]['domains'])>0):
hit['q_aligned_domains'] = do_sub_alignment_stats(q_hit_list[0]['domains'], q_map, s_map, hit['q_start'],hit['q_end'],hit['s_start'],hit['s_end'],
('score','ident','qa_start', 'qa_end', 'sa_start', 'sa_end'))
################
## final output display
print("\t".join([str(hit[x]) for x in out_tab_fields]),end='') # show fields from original blast tabular file
merged_annots_r = merge_annots(hit) # merge the four possible annotation lists into one.
if (len(merged_annots_r)>0):
print("\t"+format_annot_info(merged_annots_r, hit),end='')
if (args.dom_info):
if (len(q_hit_list) > 0 and 'domains' in q_hit_list[0]):
print("\t"+format_dom_info(q_hit_list[0]['domains'], hit['domains']),end='')
else:
print("\t"+format_dom_info([], hit['domains']),end='')
elif (len(list_covered)>0):
print("\t" + ";".join(list_covered))
if (args.dom_info):
print("\t"+format_dom_info(q_hit_list[0]['domains'], hit['domains']),end='')
print()
for line in header_lines:
print(line,end="")
if __name__ == '__main__':
print('# ' + ' '.join(sys.argv))
parser=argparse.ArgumentParser(description='annot_blast_btop4.py : annotate blast tabular format with BTOP ')
# not implemented
# parser.add_argument('--matrix', help='scoring matrix',dest='matrix',action='store',default='BL62')
parser.add_argument('--ann_script', help='script for subject annotations',dest='ann_script',action='store')
parser.add_argument('--q_ann_script', help='script for query annotations',dest='q_ann_script',action='store')
parser.add_argument('--ann_file', help='subject annotation file',dest='ann_file',action='store')
parser.add_argument('--q_ann_file', help='query annotation file',dest='q_ann_file',action='store')
parser.add_argument('--have_qslen', help='query/subject lenghts in tab file',dest='have_qslen',action='store_true',default=False)
parser.add_argument('--dom_info', help='show unaligned domain coordinates',dest='dom_info',action='store_true',default=False)
parser.add_argument('--sub2query', help='get query annots from self-subject',dest='sub_query',action='store_true',default=False)
parser.add_argument('--query', help='file of query sequences',dest='query_file',action='store')
parser.add_argument('--out_fields', help='names/order of output fields',dest='out_fields',action='store')
parser.add_argument('--raw_score', help='raw score after bit score',dest='raw_in',action='store_true',default=True)
parser.add_argument('--no_raw_score', help='raw score after bit score',dest='raw_in',action='store_false', default=True)
parser.add_argument('--no-raw_score', help='raw score after bit score',dest='raw_in',action='store_false', default=True)
parser.add_argument('--raw_score_out', help='display raw score',dest='raw_out',action='store_true',default=False)
parser.add_argument('files', metavar='FILE', help='Blast tabular BTOP files to read', nargs='*')
args=parser.parse_args()
main(args)
|