File: Filter.cc

package info (click to toggle)
fastjet 3.0.2%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 9,224 kB
  • sloc: cpp: 21,429; sh: 11,364; fortran: 673; makefile: 542; ansic: 131
file content (412 lines) | stat: -rw-r--r-- 16,464 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
//STARTHEADER
// $Id: Filter.cc 2695 2011-11-14 22:33:07Z salam $
//
// Copyright (c) 2005-2011, Matteo Cacciari, Gavin P. Salam and Gregory Soyez
//
//----------------------------------------------------------------------
// This file is part of FastJet.
//
//  FastJet is free software; you can redistribute it and/or modify
//  it under the terms of the GNU General Public License as published by
//  the Free Software Foundation; either version 2 of the License, or
//  (at your option) any later version.
//
//  The algorithms that underlie FastJet have required considerable
//  development and are described in hep-ph/0512210. If you use
//  FastJet as part of work towards a scientific publication, please
//  include a citation to the FastJet paper.
//
//  FastJet is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//  GNU General Public License for more details.
//
//  You should have received a copy of the GNU General Public License
//  along with FastJet. If not, see <http://www.gnu.org/licenses/>.
//----------------------------------------------------------------------
//ENDHEADER

#include "fastjet/tools/Filter.hh"
#include <fastjet/ClusterSequenceActiveAreaExplicitGhosts.hh>
#include <cassert>
#include <algorithm>
#include <sstream>
#include <typeinfo>

using namespace std;


FASTJET_BEGIN_NAMESPACE      // defined in fastjet/internal/base.hh

//----------------------------------------------------------------------
// Filter class implementation
//----------------------------------------------------------------------

// class description
string Filter::description() const {
  ostringstream ostr;
  ostr << "Filter with subjet_def = ";
  if (_Rfiltfunc) {
    ostr << "Cambridge/Aachen algorithm with dynamic Rfilt"
         << " (recomb. scheme deduced from jet, or E-scheme if not unique)";
  } else if (_Rfilt > 0) {
    ostr << "Cambridge/Aachen algorithm with Rfilt = " 
         << _Rfilt 
         << " (recomb. scheme deduced from jet, or E-scheme if not unique)";
  } else {
    ostr << _subjet_def.description();
  }
  ostr<< ", selection " << _selector.description();
  if (_subtractor) {
    ostr << ", subtractor: " << _subtractor->description();
  } else if (_rho != 0) {
    ostr << ", subtracting with rho = " << _rho;
  }
  return ostr.str();
}


// core functions
//----------------------------------------------------------------------

// return a vector of subjets, which are the ones that would be kept
// by the filtering
PseudoJet Filter::result(const PseudoJet &jet) const {
  // start by getting the list of subjets (including a list of sanity
  // checks)
  // NB: subjets is empty to begin with (see the comment for
  //     _set_filtered_elements_cafilt)
  vector<PseudoJet> subjets; 
  JetDefinition subjet_def;
  bool discard_area;
  // NB: on return, subjet_def is set to the jet definition actually
  //     used (so that we can make use of its recombination scheme 
  //     when joining the jets to be kept).
  _set_filtered_elements(jet, subjets, subjet_def, discard_area);

  // now build the vector of kept and rejected subjets
  vector<PseudoJet> kept, rejected;
  // Note that in the following line we make a copy of the _selector
  // to avoid issues with needing a mutable _selector
  Selector selector_copy = _selector;
  if (selector_copy.takes_reference()) selector_copy.set_reference(jet);
  selector_copy.sift(subjets, kept, rejected);

  // gather the info under the form of a PseudoJet
  return _finalise(jet, kept, rejected, subjet_def, discard_area);
}


// sets filtered_elements to be all the subjets on which filtering will work
void Filter::_set_filtered_elements(const PseudoJet & jet,
                                    vector<PseudoJet> & filtered_elements,
                                    JetDefinition & subjet_def,
                                    bool & discard_area) const {
  // sanity checks
  //-------------------------------------------------------------------
  // make sure that the jet has constituents
  if (! jet.has_constituents())
    throw Error("Filter can only be applied on jets having constituents");

  // for a whole variety of checks, we shall need the "recursive"
  // pieces of the jet (the jet itself or recursing down to its most
  // fundamental pieces).
  // So we do compute these once and for all
  vector<PseudoJet> all_pieces; //.clear();
  if ((!_get_all_pieces(jet, all_pieces)) || (all_pieces.size()==0))
    throw Error("Attempt to filter a jet that has no associated ClusterSequence or is not a superposition of jets associated with a ClusterSequence");
  
  // if the filter uses subtraction, make sure we have a CS that supports area and has
  // explicit ghosts 
  if (_uses_subtraction()) {
    if (!jet.has_area())   
      throw Error("Attempt to filter and subtract (non-zero rho or subtractor) without area info for the original jet");

    if (!_check_explicit_ghosts(all_pieces))
      throw Error("Attempt to filter and subtract (non-zero rho or subtractor) without explicit ghosts");
  }

  // if we're dealing with a dynamic determination of the filtering
  // radius, do it now
  if ((_Rfilt>=0) || (_Rfiltfunc)){
    double Rfilt = (_Rfiltfunc) ? (*_Rfiltfunc)(jet) : _Rfilt;
    const JetDefinition::Recombiner * common_recombiner = _get_common_recombiner(all_pieces);
    if (common_recombiner) {
      if (typeid(*common_recombiner) == typeid(JetDefinition::DefaultRecombiner)) {
        RecombinationScheme scheme = 
          static_cast<const JetDefinition::DefaultRecombiner *>(common_recombiner)->scheme();
        subjet_def = JetDefinition(cambridge_algorithm, Rfilt, scheme);
      } else {
        subjet_def = JetDefinition(cambridge_algorithm, Rfilt, common_recombiner);
      }
    } else {
      subjet_def = JetDefinition(cambridge_algorithm, Rfilt);
    }
  } else {
    subjet_def = _subjet_def;
  }

  // get the jet definition to be use and whether we can apply our
  // simplified C/A+C/A filter
  //
  // we apply C/A clustering iff
  //  - the request subjet_def is C/A
  //  - the jet is either directly coming from C/A or if it is a
  //    superposition of C/A jets
  //  - the pieces agree with the recombination scheme of subjet_def
  //------------------------------------------------------------------
  bool simple_cafilt = _check_ca(all_pieces);

  // extract the subjets
  //-------------------------------------------------------------------
  discard_area = false;
  if (simple_cafilt){
    // first make sure that 'filtered_elements' is empty
    filtered_elements.clear();
    _set_filtered_elements_cafilt(jet, filtered_elements, subjet_def.R());
    // in the following case, areas can be erroneous and will be discarded
    discard_area = (!_uses_subtraction()) && (jet.has_area()) && (!_check_explicit_ghosts(all_pieces));
  } else {
    // here we'll simply recluster the jets.
    //
    // To include an area support we need
    //  - the jet to have an area
    //  - subtraction requested or explicit ghosts
    bool do_areas = (jet.has_area()) && ((_uses_subtraction()) || (_check_explicit_ghosts(all_pieces))); 
    _set_filtered_elements_generic(jet, filtered_elements, subjet_def, do_areas);
  }

  // order the filtered elements in pt
  filtered_elements = sorted_by_pt(filtered_elements);
}

// set the filtered elements in the simple case of C/A+C/A
//
// WATCH OUT: this could be recursively called, so filtered elements
//            of 'jet' are APPENDED to 'filtered_elements'
void Filter::_set_filtered_elements_cafilt(const PseudoJet & jet, 
                                           vector<PseudoJet> & filtered_elements, 
                                           double Rfilt) const{
  // we know that the jet is either a C/A jet or a superposition of
  // such pieces
  if (jet.has_associated_cluster_sequence()){
    // just extract the exclusive subjets of 'jet'
    const ClusterSequence *cs = jet.associated_cluster_sequence(); 
    vector<PseudoJet> local_fe;

    double dcut = Rfilt / cs->jet_def().R();
    if (dcut>=1.0){
      local_fe.push_back(jet);
    } else {
      dcut *= dcut;
      local_fe = jet.exclusive_subjets(dcut);
    }

    // subtract the jets if needed
    // Note that this one would work on pieces!!
    //-----------------------------------------------------------------
    if (_uses_subtraction()){
      const ClusterSequenceAreaBase * csab = jet.validated_csab();
      for (unsigned int i=0;i<local_fe.size();i++) {
        if (_subtractor) {
          local_fe[i] = (*_subtractor)(local_fe[i]);
        } else {
          local_fe[i] = csab->subtracted_jet(local_fe[i], _rho);
        }
      }
    }

    copy(local_fe.begin(), local_fe.end(), back_inserter(filtered_elements));
    return;
  }

  // just recurse into the pieces
  const vector<PseudoJet> & pieces = jet.pieces();
  for (vector<PseudoJet>::const_iterator it = pieces.begin(); 
       it!=pieces.end(); it++)
    _set_filtered_elements_cafilt(*it, filtered_elements, Rfilt);
}


// set the filtered elements in the generic re-clustering case (wo
// subtraction)
void Filter::_set_filtered_elements_generic(const PseudoJet & jet, 
                                            vector<PseudoJet> & filtered_elements,
                                            const JetDefinition & subjet_def,
					    bool do_areas) const{
  // create a new, internal, ClusterSequence from the jet constituents
  // get the subjets directly from there
  //
  // If the jet has area support then we separate the ghosts from the
  // "regular" particles so the subjets will also have area
  // support. Note that we do this regardless of whether rho is zero
  // or not.
  //
  // Note that to be able to separate the ghosts, one needs explicit
  // ghosts!!
  // ---------------------------------------------------------------
  if (do_areas){
    vector<PseudoJet> all_constituents = jet.constituents();
    vector<PseudoJet> regular_constituents, ghosts;  

    for (vector<PseudoJet>::iterator it = all_constituents.begin(); 
         it != all_constituents.end(); it++){
      if (it->is_pure_ghost())
        ghosts.push_back(*it);
      else
        regular_constituents.push_back(*it);
    }

    // figure out the ghost area from the 1st ghost (if none, any value
    // would probably do as the area will be 0 and subtraction will have
    // no effect!)
    double ghost_area = (ghosts.size()) ? ghosts[0].area() : 0.01;
    ClusterSequenceActiveAreaExplicitGhosts * csa
      = new ClusterSequenceActiveAreaExplicitGhosts(regular_constituents, 
                                                    subjet_def, 
                                                    ghosts, ghost_area);

    // get the subjets: we use the subtracted or unsubtracted ones
    // depending on rho or _subtractor being non-zero
    if (_uses_subtraction()) {
      if (_subtractor) {
        filtered_elements = (*_subtractor)(csa->inclusive_jets());
      } else {
        filtered_elements = csa->subtracted_jets(_rho);
      }
    } else {
      filtered_elements = csa->inclusive_jets();
    }

    // allow the cs to be deleted when it's no longer used
    csa->delete_self_when_unused();
  } else {
    ClusterSequence * cs = new ClusterSequence(jet.constituents(), subjet_def);
    filtered_elements = cs->inclusive_jets();
    // allow the cs to be deleted when it's no longer used
    cs->delete_self_when_unused();
  }
}


// gather the information about what is kept and rejected under the
// form of a PseudoJet with a special ClusterSequenceInfo
PseudoJet Filter::_finalise(const PseudoJet & /*jet*/, 
                            vector<PseudoJet> & kept, 
                            vector<PseudoJet> & rejected,
                            const JetDefinition & subjet_def,
                            const bool discard_area) const {
  // figure out which recombiner to use
  const JetDefinition::Recombiner &rec = *(subjet_def.recombiner());

  // create an appropriate structure and transfer the info to it
  PseudoJet filtered_jet = join<StructureType>(kept, rec);
  StructureType *fs = (StructureType*) filtered_jet.structure_non_const_ptr();
//  fs->_original_jet = jet;
  fs->_rejected = rejected;

  if (discard_area){
    // safety check: make sure there is an area to discard!!!
    assert(fs->_area_4vector_ptr);
    delete fs->_area_4vector_ptr;
    fs->_area_4vector_ptr=0;
  }
  
  return filtered_jet;
}

// various checks
//----------------------------------------------------------------------

// get the pieces down to the fundamental pieces
// 
// Note that this just checks that there is an associated CS to the
// fundamental pieces, not that it is still valid
bool Filter::_get_all_pieces(const PseudoJet &jet, vector<PseudoJet> &all_pieces) const{
  if (jet.has_associated_cluster_sequence()){
    all_pieces.push_back(jet);
    return true;
  }

  if (jet.has_pieces()){
    const vector<PseudoJet> pieces = jet.pieces();
    for (vector<PseudoJet>::const_iterator it=pieces.begin(); it!=pieces.end(); it++)
      if (!_get_all_pieces(*it, all_pieces)) return false;
    return true;
  }

  return false;
}

// get the common recombiner to all pieces (NULL if none)
//
// Note that if the jet has an associated cluster sequence that is no
// longer valid, an error will be thrown (needed since it could be the
// 1st check called after the enumeration of the pieces)
const JetDefinition::Recombiner* Filter::_get_common_recombiner(const vector<PseudoJet> &all_pieces) const{
  const JetDefinition & jd_ref = all_pieces[0].validated_cs()->jet_def();
  for (unsigned int i=1; i<all_pieces.size(); i++)
    if (!all_pieces[i].validated_cs()->jet_def().has_same_recombiner(jd_ref)) return NULL;

  return jd_ref.recombiner();
}

// check if the jet (or all its pieces) have explicit ghosts
// (assuming the jet has area support
//
// Note that if the jet has an associated cluster sequence that is no
// longer valid, an error will be thrown (needed since it could be the
// 1st check called after the enumeration of the pieces)
bool Filter::_check_explicit_ghosts(const vector<PseudoJet> &all_pieces) const{
  for (vector<PseudoJet>::const_iterator it=all_pieces.begin(); it!=all_pieces.end(); it++)
    if (! it->validated_csab()->has_explicit_ghosts()) return false;
  return true;
}

// check if one can apply the simplification for C/A subjets
//
// This includes:
//  - the subjet definition asks for C/A subjets
//  - all the pieces share the same CS
//  - that CS is C/A with the same recombiner as the subjet def
//  - the filtering radius is not larger than any of the pairwise
//    distance between the pieces
//
// Note that if the jet has an associated cluster sequence that is no
// longer valid, an error will be thrown (needed since it could be the
// 1st check called after the enumeration of the pieces)
bool Filter::_check_ca(const vector<PseudoJet> &all_pieces) const{
  if (_subjet_def.jet_algorithm() != cambridge_algorithm) return false;

  // check that the 1st of all the pieces (we're sure there is at
  // least one) is coming from a C/A clustering. Then check that all
  // the following pieces share the same ClusterSequence
  const ClusterSequence * cs_ref = all_pieces[0].validated_cs();
  if (cs_ref->jet_def().jet_algorithm() != cambridge_algorithm) return false;
  for (unsigned int i=1; i<all_pieces.size(); i++)
    if (all_pieces[i].validated_cs() != cs_ref) return false;

  // check that the 1st peice has the same recombiner as the one used
  // for the subjet clustering
  // Note that since they share the same CS, checking the 2st one is enough
  if (!cs_ref->jet_def().has_same_recombiner(_subjet_def)) return false;

  // we also have to make sure that the filtering radius is not larger
  // than any of the inter-pieces distance
  double Rfilt2 = _subjet_def.R();
  Rfilt2 *= Rfilt2;
  for (unsigned int i=0; i<all_pieces.size()-1; i++){
    for (unsigned int j=i+1; j<all_pieces.size(); j++){
      if (all_pieces[i].squared_distance(all_pieces[j]) <  Rfilt2) return false;
    }
  }

  return true;
}

//----------------------------------------------------------------------
// FilterInterface implementation 
//----------------------------------------------------------------------


FASTJET_END_NAMESPACE      // defined in fastjet/internal/base.hh