1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
//----------------------------------------------------------------------
/// \file
/// \page Example11 11 - use of filtering
///
/// fastjet example program to illustrate the use of the
/// fastjet::Filter class
///
/// We apply different filter examples to either the hardest jet of
/// the given event, or to the composition of the two hardest jets:
///
/// - two examples of a filter keeping a fixed number of subjets (as
/// in arXiv:0802.2470)
/// - a "trimmer" i.e. a filter keeping subjets carrying at least a given
/// fraction of the pt of the jet (arXiv:0912.1342).
/// - two examples of filter in combination with background subtraction
///
/// run it with : ./11-filter < data/single-event.dat
///
/// Source code: 11-filter.cc
//----------------------------------------------------------------------
//STARTHEADER
// $Id: 11-filter.cc 3249 2013-10-28 15:06:25Z salam $
//
// Copyright (c) 2005-2011, Matteo Cacciari, Gavin P. Salam and Gregory Soyez
//
//----------------------------------------------------------------------
// This file is part of FastJet.
//
// FastJet is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// The algorithms that underlie FastJet have required considerable
// development and are described in hep-ph/0512210. If you use
// FastJet as part of work towards a scientific publication, please
// include a citation to the FastJet paper.
//
// FastJet is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with FastJet. If not, see <http://www.gnu.org/licenses/>.
//----------------------------------------------------------------------
//ENDHEADER
#include <fastjet/PseudoJet.hh>
#include <fastjet/ClusterSequence.hh>
#include <fastjet/Selector.hh>
#include <iostream>
#include "fastjet/tools/Filter.hh"
// the following includes are only needed when combining filtering with subtraction
#include "fastjet/tools/GridMedianBackgroundEstimator.hh"
#include "fastjet/ClusterSequenceArea.hh"
#include "fastjet/tools/Subtractor.hh"
#include <cstdio> // needed for io
using namespace fastjet;
using namespace std;
// a function returning
// min(Rmax, deltaR_factor * deltaR(j1,j2))
// where j1 and j2 are the 2 subjets of j
// if the jet does not have 2 exactly pieces, Rmax is used.
class DynamicRfilt : public FunctionOfPseudoJet<double>{
public:
// default ctor
DynamicRfilt(double Rmax, double deltaR_factor) : _Rmax(Rmax), _deltaR_factor(deltaR_factor){}
// action of the function
double result(const PseudoJet &j) const{
if (! j.has_pieces()) return _Rmax;
vector<PseudoJet> pieces = j.pieces();
if (pieces.size() != 2) return _Rmax;
double deltaR = pieces[0].delta_R(pieces[1]);
return min(_Rmax, _deltaR_factor * deltaR);
}
private:
double _Rmax, _deltaR_factor;
};
/// an example program showing how to use Filter in FastJet
int main(){
// read in input particles
//----------------------------------------------------------
vector<PseudoJet> input_particles;
double px, py , pz, E;
while (cin >> px >> py >> pz >> E) {
// create a PseudoJet with these components and put it onto
// back of the input_particles vector
input_particles.push_back(PseudoJet(px,py,pz,E));
}
// get the resulting jets ordered in pt
//----------------------------------------------------------
JetDefinition jet_def(cambridge_algorithm, 1.2);
// the use of a ClusterSequenceArea (instead of a plain ClusterSequence)
// is only needed because we will later combine filtering with area-based
// subtraction
ClusterSequenceArea clust_seq(input_particles, jet_def,
AreaDefinition(active_area_explicit_ghosts));
vector<PseudoJet> inclusive_jets = sorted_by_pt(clust_seq.inclusive_jets(5.0));
// label the columns
printf("%5s %15s %15s %15s\n","jet #", "rapidity", "phi", "pt");
// print out the details for each jet
for (unsigned int i = 0; i < inclusive_jets.size(); i++) {
printf("%5u %15.8f %15.8f %15.8f\n",
i, inclusive_jets[i].rap(), inclusive_jets[i].phi(),
inclusive_jets[i].perp());
}
// simple test to avoid that the example below crashes:
// make sure there is at least 3 jets above our 5 GeV
if (inclusive_jets.size()<3){
cout << "Please provide an event with at least 3 jets above 5 GeV" << endl;
return 1;
}
// the sample PseudoJet that we will filter
// - the hardest jet of the event
// - the composition of the second and third hardest jets
/// (this shows that the Filter can also be applied to a composite jet)
//----------------------------------------------------------
vector<PseudoJet> candidates;
candidates.push_back(inclusive_jets[0]);
candidates.push_back(join(inclusive_jets[1],inclusive_jets[2]));
// create 5 filters
//----------------------------------------------------------
vector<Filter> filters;
// 1.
// the Cambridge/Aachen filter with Rfilt=0.3 (simpliefied version of arXiv:0802.2470)
filters.push_back(Filter(JetDefinition(cambridge_algorithm, 0.3), SelectorNHardest(3)));
// 2.
// the Cambridge/Aachen filter with Rfilt=min(0.3, 0.5*Rbb) as in arXiv:0802.2470
SharedPtr<DynamicRfilt> dynamic_Rfilt(new DynamicRfilt(0.3, 0.5));
filters.push_back(Filter(dynamic_Rfilt.get(), SelectorNHardest(3)));
// 3.
// Filtering with a pt cut as for trimming (arXiv:0912.1342)
filters.push_back(Filter(JetDefinition(kt_algorithm, 0.2), SelectorPtFractionMin(0.03)));
// 4.
// First example of filtering with subtraction of the background: provide rho
// First, estimate the background for the given event
GridMedianBackgroundEstimator bkgd(4.5, 0.55); // uses particles up to |y|=4.5
bkgd.set_particles(input_particles);
double rho = bkgd.rho();
// Then, define the filter
filters.push_back(Filter(JetDefinition(cambridge_algorithm, 0.3), SelectorNHardest(3), rho));
// 5.
// Second example of filtering with subtraction of the background: set a subtractor
// First, define a subtractor from a background estimator
Subtractor subtractor(&bkgd);
// Then, define the filter
Filter filt(JetDefinition(cambridge_algorithm, 0.3), SelectorNHardest(3));
// Finally, tell the filter about the subtractor
filt.set_subtractor(&subtractor);
filters.push_back(filt);
// apply the various filters to the test PseudoJet
// and show the result
//----------------------------------------------------------
// print out original jet candidates
cout << "\nOriginal jets that will be filtered: " << endl;
for (vector<PseudoJet>::iterator jit=candidates.begin(); jit!=candidates.end(); jit++){
const PseudoJet & c = *jit;
cout << " rap = " << c.rap() << ", phi = " << c.phi() << ", pt = " << c.perp()
<< " [" << c.description() << "]" << endl;
}
// loop on filters
for (vector<Filter>::iterator it=filters.begin(); it!=filters.end(); it++){
const Filter & f = *it;
cout << "\nUsing filter: " << f.description() << endl;
// loop on jet candidates
for (vector<PseudoJet>::iterator jit=candidates.begin(); jit!=candidates.end(); jit++){
const PseudoJet & c = *jit;
// apply filter f to jet c
PseudoJet j = f(c);
// access properties specific to the Filter
//
// We first make sure that the jet indeed has a structure
// compatible with the result of a Filter (using
// has_structure_of()), and then retrieve the pieces rejected by the
// filter (using structure_of())
assert(j.has_structure_of<Filter>());
const Filter::StructureType & fj_struct = j.structure_of<Filter>();
// write out result
cout << " rap = " << j.rap() << ", phi = " << j.phi() << ", pt = " << j.perp()
<< " [kept: " << j.pieces().size() << ", rejected: "
<< fj_struct.rejected().size() << "]" << endl;
}
}
return 0;
}
|