1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
|
//STARTHEADER
// $Id: fastjetfortran.cc 2577 2011-09-13 15:11:38Z salam $
//
// Copyright (c) 2005-2011, Matteo Cacciari, Gavin P. Salam and Gregory Soyez
//
//----------------------------------------------------------------------
// This file is part of FastJet.
//
// FastJet is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// The algorithms that underlie FastJet have required considerable
// development and are described in hep-ph/0512210. If you use
// FastJet as part of work towards a scientific publication, please
// include a citation to the FastJet paper.
//
// FastJet is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with FastJet. If not, see <http://www.gnu.org/licenses/>.
//----------------------------------------------------------------------
//ENDHEADER
#include <iostream>
#include "fastjet/ClusterSequence.hh"
#include "fastjet/ClusterSequenceArea.hh"
#include "fastjet/Selector.hh"
#include "fastjet/SISConePlugin.hh"
using namespace std;
using namespace fastjet;
FASTJET_BEGIN_NAMESPACE // defined in fastjet/internal/base.hh
/// a namespace for the fortran-wrapper which contains commonly-used
/// structures and means to transfer fortran <-> C++
namespace fwrapper {
vector<PseudoJet> input_particles, jets;
auto_ptr<JetDefinition::Plugin> plugin;
JetDefinition jet_def;
auto_ptr<ClusterSequence> cs;
/// helper routine to transfer fortran input particles into
void transfer_input_particles(const double * p, const int & npart) {
input_particles.resize(0);
input_particles.reserve(npart);
for (int i=0; i<npart; i++) {
valarray<double> mom(4); // mom[0..3]
for (int j=0;j<=3; j++) {
mom[j] = *(p++);
}
PseudoJet psjet(mom);
input_particles.push_back(psjet);
}
}
/// helper routine to help transfer jets -> f77jets[4*ijet+0..3]
void transfer_jets(double * f77jets, int & njets) {
njets = jets.size();
for (int i=0; i<njets; i++) {
for (int j=0;j<=3; j++) {
*f77jets = jets[i][j];
f77jets++;
}
}
}
/// helper routine packaging the transfers, the clustering
/// and the extraction of the jets
void transfer_cluster_transfer(const double * p, const int & npart,
const JetDefinition & jet_def,
double * f77jets, int & njets,
const double & ghost_maxrap = 0.0,
const int & nrepeat = 0, const double & ghost_area = 0.0) {
// transfer p[4*ipart+0..3] -> input_particles[i]
transfer_input_particles(p, npart);
// perform the clustering
if ( ghost_maxrap == 0.0 ) {
// cluster without areas
cs.reset(new ClusterSequence(input_particles,jet_def));
} else {
// cluster with areas
GhostedAreaSpec area_spec(ghost_maxrap,nrepeat,ghost_area);
AreaDefinition area_def(active_area, area_spec);
cs.reset(new ClusterSequenceArea(input_particles,jet_def,area_def));
}
// extract jets (pt-ordered)
jets = sorted_by_pt(cs->inclusive_jets());
// transfer jets -> f77jets[4*ijet+0..3]
transfer_jets(f77jets, njets);
}
}
FASTJET_END_NAMESPACE
using namespace fastjet::fwrapper;
extern "C" {
/// f77 interface to SISCone (via fastjet), as defined in arXiv:0704.0292
/// [see below for the interface to kt, Cam/Aachen & kt]
//
// Corresponds to the following Fortran subroutine
// interface structure:
//
// SUBROUTINE FASTJETSISCONE(P,NPART,R,F,F77JETS,NJETS)
// DOUBLE PRECISION P(4,*), R, F, F77JETS(4,*)
// INTEGER NPART, NJETS
//
// where on input
//
// P the input particle 4-momenta
// NPART the number of input momenta
// R the radius parameter
// F the overlap threshold
//
// and on output
//
// F77JETS the output jet momenta (whose second dim should be >= NPART)
// sorted in order of decreasing p_t.
// NJETS the number of output jets
//
// NOTE: if you are interfacing fastjet to Pythia 6, Pythia stores its
// momenta as a matrix of the form P(4000,5), whereas this fortran
// interface to fastjet expects them as P(4,NPART), i.e. you must take
// the transpose of the Pythia array and drop the fifth component
// (particle mass).
//
void fastjetsiscone_(const double * p, const int & npart,
const double & R, const double & f,
double * f77jets, int & njets) {
// prepare jet def
plugin.reset(new SISConePlugin(R,f));
jet_def = plugin.get();
// do everything
transfer_cluster_transfer(p,npart,jet_def,f77jets,njets);
}
/// f77 interface to SISCone (via fastjet), as defined in arXiv:0704.0292
/// [see below for the interface to kt, Cam/Aachen & kt]
/// Also calculates the active area of the jets, as defined in
/// arXiv.org:0802.1188
//
// Corresponds to the following Fortran subroutine
// interface structure:
//
// SUBROUTINE FASTJETSISCONEWITHAREA(P,NPART,R,F,GHMAXRAP,NREP,GHAREA,F77JETS,NJETS)
// DOUBLE PRECISION P(4,*), R, F, F77JETS(4,*), GHMAXRAP, GHAREA
// INTEGER NPART, NJETS, NREP
//
// where on input
//
// P the input particle 4-momenta
// NPART the number of input momenta
// R the radius parameter
// F the overlap threshold
// GHMAXRAP the maximum (abs) rapidity covered by ghosts (FastJet default 6.0)
// NREP the number of repetitions used to evaluate the area (FastJet default 1)
// GHAREA the area of a single ghost (FastJet default 0.01)
//
// and on output
//
// F77JETS the output jet momenta (whose second dim should be >= NPART)
// sorted in order of decreasing p_t.
// NJETS the number of output jets
//
// NOTE: if you are interfacing fastjet to Pythia 6, Pythia stores its
// momenta as a matrix of the form P(4000,5), whereas this fortran
// interface to fastjet expects them as P(4,NPART), i.e. you must take
// the transpose of the Pythia array and drop the fifth component
// (particle mass).
//
void fastjetsisconewitharea_(const double * p, const int & npart,
const double & R, const double & f,
const double & ghost_rapmax, const int & nrepeat, const double & ghost_area,
double * f77jets, int & njets) {
// prepare jet def
plugin.reset(new SISConePlugin(R,f));
jet_def = plugin.get();
// do everything
transfer_cluster_transfer(p,npart,jet_def,f77jets,njets,ghost_rapmax,nrepeat,ghost_area);
}
/// f77 interface to the pp generalised-kt (sequential recombination)
/// algorithms, as defined in arXiv.org:0802.1189, which includes
/// kt, Cambridge/Aachen and anti-kt as special cases.
//
// Corresponds to the following Fortran subroutine
// interface structure:
//
// SUBROUTINE FASTJETPPGENKT(P,NPART,R,PALG,F77JETS,NJETS)
// DOUBLE PRECISION P(4,*), R, PALG, F, F77JETS(4,*)
// INTEGER NPART, NJETS
//
// where on input
//
// P the input particle 4-momenta
// NPART the number of input momenta
// R the radius parameter
// PALG the power for the generalised kt alg
// (1.0=kt, 0.0=C/A, -1.0 = anti-kt)
//
// and on output
//
// F77JETS the output jet momenta (whose second dim should be >= NPART)
// sorted in order of decreasing p_t.
// NJETS the number of output jets
//
// For the values of PALG that correspond to "standard" cases (1.0=kt,
// 0.0=C/A, -1.0 = anti-kt) this routine actually calls the direct
// implementation of those algorithms, whereas for other values of
// PALG it calls the generalised kt implementation.
//
// NOTE: if you are interfacing fastjet to Pythia 6, Pythia stores its
// momenta as a matrix of the form P(4000,5), whereas this fortran
// interface to fastjet expects them as P(4,NPART), i.e. you must take
// the transpose of the Pythia array and drop the fifth component
// (particle mass).
//
void fastjetppgenkt_(const double * p, const int & npart,
const double & R, const double & palg,
double * f77jets, int & njets) {
// prepare jet def
if (palg == 1.0) {
jet_def = JetDefinition(kt_algorithm, R);
} else if (palg == 0.0) {
jet_def = JetDefinition(cambridge_algorithm, R);
} else if (palg == -1.0) {
jet_def = JetDefinition(antikt_algorithm, R);
} else {
jet_def = JetDefinition(genkt_algorithm, R, palg);
}
// do everything
transfer_cluster_transfer(p,npart,jet_def,f77jets,njets);
}
/// f77 interface to the pp generalised-kt (sequential recombination)
/// algorithms, as defined in arXiv.org:0802.1189, which includes
/// kt, Cambridge/Aachen and anti-kt as special cases.
/// Also calculates the active area of the jets, as defined in
/// arXiv.org:0802.1188
//
// Corresponds to the following Fortran subroutine
// interface structure:
//
// SUBROUTINE FASTJETPPGENKTWITHAREA(P,NPART,R,PALG,GHMAXRAP,NREP,GHAREA,F77JETS,NJETS)
// DOUBLE PRECISION P(4,*), R, PALG, GHMAXRAP, GHAREA, F77JETS(4,*)
// INTEGER NPART, NREP, NJETS
//
// where on input
//
// P the input particle 4-momenta
// NPART the number of input momenta
// R the radius parameter
// PALG the power for the generalised kt alg
// (1.0=kt, 0.0=C/A, -1.0 = anti-kt)
// GHMAXRAP the maximum (abs) rapidity covered by ghosts (FastJet default 6.0)
// NREP the number of repetitions used to evaluate the area (FastJet default 1)
// GHAREA the area of a single ghost (FastJet default 0.01)
//
// and on output
//
// F77JETS the output jet momenta (whose second dim should be >= NPART)
// sorted in order of decreasing p_t.
// NJETS the number of output jets
//
// For the values of PALG that correspond to "standard" cases (1.0=kt,
// 0.0=C/A, -1.0 = anti-kt) this routine actually calls the direct
// implementation of those algorithms, whereas for other values of
// PALG it calls the generalised kt implementation.
//
// NOTE: if you are interfacing fastjet to Pythia 6, Pythia stores its
// momenta as a matrix of the form P(4000,5), whereas this fortran
// interface to fastjet expects them as P(4,NPART), i.e. you must take
// the transpose of the Pythia array and drop the fifth component
// (particle mass).
//
void fastjetppgenktwitharea_(const double * p, const int & npart,
const double & R, const double & palg,
const double & ghost_rapmax, const int & nrepeat, const double & ghost_area,
double * f77jets, int & njets) {
// prepare jet def
if (palg == 1.0) {
jet_def = JetDefinition(kt_algorithm, R);
} else if (palg == 0.0) {
jet_def = JetDefinition(cambridge_algorithm, R);
} else if (palg == -1.0) {
jet_def = JetDefinition(antikt_algorithm, R);
} else {
jet_def = JetDefinition(genkt_algorithm, R, palg);
}
// do everything
transfer_cluster_transfer(p,npart,jet_def,f77jets,njets,ghost_rapmax,nrepeat,ghost_area);
}
/// f77 interface to provide access to the constituents of a jet found
/// in the jet clustering with one of the above routines.
///
/// Given the index ijet of a jet (in the range 1...njets) obtained in
/// the last call to jet clustering, fill the array
/// constituent_indices, with nconstituents entries, with the indices
/// of the constituents that belong to that jet (which will be in the
/// range 1...npart)
//
// Corresponds to the following Fortran subroutine
// interface structure:
//
// SUBROUTINE FASTJETCONSTITUENTS(IJET,CONSTITUENT_INDICES,NCONSTITUENTS)
// INTEGER IJET
// INTEGER CONSTITUENT_INDICES(*)
// INTEGER nconstituents
//
void fastjetconstituents_(const int & ijet,
int * constituent_indices, int & nconstituents) {
assert(cs.get() != 0);
assert(ijet > 0 && ijet <= jets.size());
vector<PseudoJet> constituents = cs->constituents(jets[ijet-1]);
nconstituents = constituents.size();
for (unsigned i = 0; i < nconstituents; i++) {
constituent_indices[i] = constituents[i].cluster_hist_index()+1;
}
}
/// f77 interface to provide access to the area of a jet found
/// in the jet clustering with one of the above "...witharea" routines.
///
/// Given the index ijet of a jet (in the range 1...njets) obtained in
/// the last call to jet clustering, return its area. If the jets have
/// not been obtained with a "...witharea" soutine it returns 0.
//
// Corresponds to the following Fortran subroutine
// interface structure:
//
// FUNCTION FASTJETAREA(IJET)
// DOUBLE PRECISION FASTJETAREA
// INTEGER IJET
//
double fastjetarea_(const int & ijet) {
assert(ijet > 0 && ijet <= jets.size());
const ClusterSequenceAreaBase * csab =
dynamic_cast<const ClusterSequenceAreaBase *>(cs.get());
if (csab != 0) {
// we have areas and can use csab to access all the area-related info
return csab->area(jets[ijet-1]);
} else {
return 0.;
// Error("No area information associated to this jet.");
}
}
/// return the dmin corresponding to the recombination that went from
/// n+1 to n jets (sometimes known as d_{n n+1}).
//
// Corresponds to the following Fortran interface
//
// FUNCTION FASTJETDMERGE(N)
// DOUBLE PRECISION FASTJETDMERGE
// INTEGER N
//
double fastjetdmerge_(const int & n) {
assert(cs.get() != 0);
return cs->exclusive_dmerge(n);
}
/// return the maximum of the dmin encountered during all recombinations
/// up to the one that led to an n-jet final state; identical to
/// exclusive_dmerge, except in cases where the dmin do not increase
/// monotonically.
//
// Corresponds to the following Fortran interface
//
// FUNCTION FASTJETDMERGEMAX(N)
// DOUBLE PRECISION FASTJETDMERGEMAX
// INTEGER N
//
double fastjetdmergemax_(const int & n) {
assert(cs.get() != 0);
return cs->exclusive_dmerge_max(n);
}
/// return the background transverse momentum density per unit scalar
/// area rho, its fluctuation sigma, and the mean area of the jets used for the
/// background estimation in a given event,
/// as evaluated in the range [rapmin,rapmax] in rapidity and [phimin,phimax] in azimuth
//
// Corresponds to the following Fortran interface
//
// SUBROUTINE FASTJETGLOBALRHOANDSIGMA(RAPMIN,RAPMAX,PHIMIN,PHIMAX,RHO,SIGMA,MEANAREA)
// DOUBLE PRECISION RAPMIN,RAPMAX,PHIMIN,PHIMAX
// DOUBLE PRECISION RHO,SIGMA,MEANAREA
//
void fastjetglobalrhoandsigma_(const double & rapmin, const double & rapmax,
const double & phimin, const double & phimax,
double & rho, double & sigma, double & meanarea) {
const ClusterSequenceAreaBase * csab =
dynamic_cast<const ClusterSequenceAreaBase *>(cs.get());
if (csab != 0) {
// we have areas and can use csab to access all the area-related info
Selector range = SelectorRapRange(rapmin,rapmax) && SelectorPhiRange(phimin,phimax);
bool use_area_4vector = false;
csab->get_median_rho_and_sigma(range,use_area_4vector,rho,sigma,meanarea);
} else {
Error("Clustering with area is necessary in order to be able to evaluate rho.");
}
}
}
|