File: ConeClusterAlgo.hpp

package info (click to toggle)
fastjet 3.0.6%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster, stretch
  • size: 9,468 kB
  • ctags: 3,766
  • sloc: cpp: 21,498; sh: 10,546; fortran: 673; makefile: 518; ansic: 131
file content (914 lines) | stat: -rw-r--r-- 27,080 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
//////////////////////////////////////////////////////////////
//  File: ConeClusterAlgo.hpp                                 
//
//  Author: G. Le Meur & F. Touze
//
//  Created: 15-JUNE-1998        
//
//  Purpose: make jet clusters using fixed cone like algorithm
//           implemented in RUNI.
//
//  Modified: 
//  28-OCT-1998 to use KinemUtil (S. Protopopescu)
//   8-JAN-1999: Laurent Duflot
//     . correct bugs in getItemsInCone and updateEtaPhiEt for jets
//       overlapping the phi=0 line
//     . change abs(float) to fabs(float)
//   1-NOV-1999: Laurent Duflot
//     . correct bug in makeCluster: when the temporary jet was emptied the eta
//       and phi were not set again. The main effect was a nearly zero 
//       efficiency for jets at phi=pi (as seen by Volker Buescher)
//   25-JAN-2000: Francois Touze
//     . change in updateEtaPhiEt : the method E() which returns energy doesn't
//       exist in MCparticle classe,... so use the 4-momentum components
//     . declare const the EnergyClusterCollection of seeds in makeClusters
//   01-FEB-2000: Laurent Duflot
//     . add a missing break statement in the removal of shared items. Caused
//       an infinite loop on some events.
//     . correct typo in variable name. Change a variable name that was in 
//       French.
//     . leave some debug printout (commented)
//   15-Sep-2009 Lars Sonnenschein
//   extracted from D0 software framework and modified to remove subsequent dependencies
//
//
// This file is distributed with FastJet under the terms of the GNU
// General Public License (v2). Permission to do so has been granted
// by Lars Sonnenschein and the D0 collaboration (see COPYING for
// details)
//
// History of changes in FastJet compared to the original version of
// ConeClusterAlgo.hpp
//
// 2011-12-13  Gregory Soyez  <soyez@fastjet.fr>
// 
//        * added license information
//
// 2011-10-06  Gregory Soyez  <soyez@fastjet.fr>
//
//        * put the code in the fastjet::d0runi namespace
//
//////////////////////////////////////////////////////////////

//#ifndef CONECLUSTERALGO_H
//#define CONECLUSTERALGO_H

#ifndef  D0RunIconeJets_CONECLUSTERALGO_H
#define  D0RunIconeJets_CONECLUSTERALGO_H


//#include "EnergyClusterReco.hpp"
#include <vector>
#include <list>
#include <utility>
//#include "kinem_util/AnglesUtil.hpp"

#include <algorithm>
#include <iostream>

#include "inline_maths.h"
#include <fastjet/internal/base.hh>

FASTJET_BEGIN_NAMESPACE

namespace d0runi{

using namespace std;

//some utility functions
inline float R2(float eta1, float phi1, float eta2, float phi2) {
  return (eta1-eta2)*(eta1-eta2)+(phi1-phi2)*(phi1-phi2); }

inline float R2_bis(float eta1, float phi1, float eta2, float phi2) {
  //float dphi = kinem::delta_phi(phi1,phi2);
  float dphi = inline_maths::delta_phi(phi1,phi2);
  return (eta1-eta2)*(eta1-eta2)+dphi*dphi; }

inline float DELTA_r(float eta1,float eta2,float phi1,float phi2) {
  //float dphi = kinem::delta_phi(phi1,phi2);
  float dphi = inline_maths::delta_phi(phi1,phi2);
  return sqrt((eta1-eta2)*(eta1-eta2)+dphi*dphi);
}

inline float E2eta(float* p) { 
   float small= 1.E-05;
   float E[3];
   if(p[3] < 0.0) {
    E[0]= -p[0];
    E[1]= -p[1];
    E[2]= -p[2];
   }
   else {
    E[0]= p[0];
    E[1]= p[1];
    E[2]= p[2];
   }
   float pperp= sqrt(E[0]*E[0]+E[1]*E[1])+small;
   float ptotal= sqrt(E[0]*E[0]+E[1]*E[1]+E[2]*E[2])+small;
   //float theta= atan2(pperp,E[2]);
 
   float eta= 0.0;
   if(E[2] > 0.0) eta= log((ptotal+E[2])/pperp);
   else eta= log(pperp/(ptotal-E[2]));
   return eta;
}

inline float E2phi(float* p) { 
   float small= 1.E-05;
   float E[3];
   if(p[3] < 0.0) {
    E[0]= -p[0];
    E[1]= -p[1];
    E[2]= -p[2];
   }
   else {
    E[0]= p[0];
    E[1]= p[1];
    E[2]= p[2];
   }
   float phi= atan2(E[1],E[0]+small);
   //if(phi < 0.0) phi+=kinem::TWOPI;
   if (phi < 0.0) phi += inline_maths::TWOPI;
   return phi;
}

//template < class CalItem,class CalItemAddress,class CalIClusterChunk >
template < class CalItem >
class ConeClusterAlgo {
  //
  // Purpose: make calorimeter clusters using a cone algorithm from 
  // preclusters created previously by the class ConePreClusterAlgo.
  // Items must have addresses and 4-momenta.
  // The algorithm is implemented with a template function makeClusters.
  //  
  public :


//default constructor
ConeClusterAlgo() {} 

//constructor for cone jet algorithm
ConeClusterAlgo( float CONErad,float JETmne,float SPLifr):
  _CONErad(fabs(CONErad)), 
  _JETmne(JETmne), 
  _SPLifr(SPLifr),
  _TWOrad(0.),
  _D0_Angle(false),
  _Increase_Delta_R(true),
  _Kill_Far_Clusters(true),
  _Jet_Et_Min_On_Iter(true),
  _Far_Ratio(0.5),
  _Eitem_Negdrop(-1.0),
  _Et_Min_Ratio(0.5),
  _Thresh_Diff_Et(0.01)
  {}

//changing default thresholds & parameters
// (declared by PARAMETER in RUNI code)
ConeClusterAlgo( float CONErad,float JETmne,float SPLifr,float TWOrad, 
                 float Tresh_Diff_Et,bool D0_Angle,bool Increase_Delta_R,
                 bool Kill_Far_Clusters,bool Jet_Et_Min_On_Iter,
                 float Far_Ratio,float Eitem_Negdrop,float Et_Min_Ratio ):
  _CONErad(fabs(CONErad)), 
  _JETmne(JETmne),
  _SPLifr(SPLifr),
  _TWOrad(TWOrad),
  _D0_Angle(D0_Angle),
  _Increase_Delta_R(Increase_Delta_R),
  _Kill_Far_Clusters(Kill_Far_Clusters),
  _Jet_Et_Min_On_Iter(Jet_Et_Min_On_Iter),
  _Far_Ratio(Far_Ratio),
  _Eitem_Negdrop(Eitem_Negdrop),
  _Et_Min_Ratio(Et_Min_Ratio),
  _Thresh_Diff_Et(Tresh_Diff_Et)
  {}

//destructor
~ConeClusterAlgo() {}
  
//to make jet clusters using cone algorithm
void makeClusters(//const EnergyClusterReco* r,
		  std::list<CalItem> &jets,
		  list<const CalItem*> &itemlist, float Zvertex 
		  //, const EnergyClusterCollection<CalItemAddress> &preclu,
		  //CalIClusterChunk* chunkptr
		  //) const;
		  );

//print parameters of the algorithm
void print(ostream &os)const;

  //vector< TemporaryJet > TempColl;  


  private :
  
  float _CONErad;
  float _JETmne;
  float _SPLifr;

  float _TWOrad;
  bool _D0_Angle;
  bool _Increase_Delta_R;
  bool _Kill_Far_Clusters;
  bool _Jet_Et_Min_On_Iter;
  float _Far_Ratio;
  float _Eitem_Negdrop;
  float _Et_Min_Ratio;
  float _Thresh_Diff_Et;

  class TemporaryJet {

  public:



    TemporaryJet() {}

    TemporaryJet(float eta,float phi) { 
      _Eta=eta; 
      _Phi=phi;
    }

    ~TemporaryJet() {}

    void addItem(const CalItem* tw) {
      _LItems.push_back(tw);
    }

    void setEtaPhiEt(float eta,float phi,float pT) {
      _Eta= eta;
      _Phi= phi;
      _Et = pT;
    }

    void erase() {
      _LItems.erase(_LItems.begin(),_LItems.end());
      _Eta= 0.0;
      _Phi= 0.0;
      _Et = 0.0;  
    }

    bool share_jets(TemporaryJet &NewJet,float SharedFr,float SPLifr) {
      //
      // combined
      //
      if(SharedFr >= SPLifr) {
	typename list<const CalItem*>::iterator it;
	typename list<const CalItem*>::iterator end_of_old=_LItems.end();
	for(it=NewJet._LItems.begin(); it!=NewJet._LItems.end(); it++) {
	  typename list<const CalItem*>::iterator 
	    where = find(_LItems.begin(),end_of_old,*it);
	  // if the item is not shared, add to this jet
	  if(where == end_of_old) {
            _LItems.push_back(*it);
          }
	}
	NewJet.erase();
	return false;
      } else {
	//
	// split
	//
	typename list<const CalItem*>::iterator it;
	for(it=NewJet._LItems.begin(); it!=NewJet._LItems.end(); ) {
	  typename list<const CalItem*>::iterator 
	    where = find(_LItems.begin(),_LItems.end(),*it);
	  if(where != _LItems.end()) {
	    //float EtaItem=(*it)->eta();
	    //float PhiItem=(*it)->phi();
	    // stay closer to the RUNI conventions for negative E cells
	    float pz[4];
	    (*it)->p4vec(pz);
	    float EtaItem= E2eta(pz);
	    float PhiItem= E2phi(pz);

	    float RadOld=R2_bis(_Eta,_Phi,EtaItem,PhiItem);
	    float RadNew=R2_bis(NewJet.Eta(),NewJet.Phi(),EtaItem,PhiItem);
	    if (RadNew > RadOld) { 
	      it = NewJet._LItems.erase(it);
	    }
	    else {
	      _LItems.erase(where);
	      ++it;
	    }
	  }
	  else ++it;
	}
	return true;
      }
    }
  

    float dist_R2(TemporaryJet &jet) const {
      float deta= _Eta-jet.Eta();
      //float dphi= kinem::delta_phi(_Phi,jet.Phi());
      float dphi= inline_maths::delta_phi(_Phi,jet.Phi());
      return (deta*deta+dphi*dphi); 
    }
 
    bool ItemInJet(const CalItem* tw) const {
      typename list<const CalItem*>::const_iterator
	where= find(_LItems.begin(),_LItems.end(),tw);
      if(where != _LItems.end()) return true;
      else return false;
    }
  
    bool updateEtaPhiEt() { 
      float ETsum = 0.0;
      float ETAsum= 0.0;
      float PHIsum= 0.0;
      float Esum= 0.0;
      typename list<const CalItem*>::iterator it;
      for(it=_LItems.begin(); it!=_LItems.end(); it++) {
        float ETk = (*it)->pT();
        // now done in CalCell/CalTower if((*it)->E() < 0.0) ETk= -ETk;

        //float ETAk= (*it)->eta();
        //float PHIk= (*it)->phi();
        float pz[4];
        (*it)->p4vec(pz);
        float ETAk= E2eta(pz);
	// take care of the phi=0=2pi problem 
        float PHIk= E2phi(pz);
	//if(fabs(PHIk-_Phi) > kinem::TWOPI-fabs(PHIk-_Phi))
	if(fabs(PHIk-_Phi) > inline_maths::TWOPI-fabs(PHIk-_Phi))
	  {
	  if(_Phi < PHIk) 
	    {
	      //PHIk -= kinem::TWOPI;
	      PHIk -= inline_maths::TWOPI;
	    }
	  else
	    {
	      //PHIk += kinem::TWOPI;
	      PHIk += inline_maths::TWOPI;
	    }
	  }
	ETAsum+= ETAk*ETk;
	PHIsum+= PHIk*ETk;
	ETsum += ETk;
        // Esum+=(*it)->E(); use 4-momentum components 
	Esum+= pz[3];
      }
      if(ETsum <= 0.0) {
	_Eta= 0.0;
	_Phi= 0.0;
	_Et = 0.0;
        _E=0.;
	return false;
      }
      else {
         _Eta= ETAsum/ETsum;
         _Phi= PHIsum/ETsum; 
	 //if ( _Phi<0 ) _Phi+=kinem::TWOPI;
	 if ( _Phi<0 ) _Phi+=inline_maths::TWOPI;
         _Et = ETsum;
         _E  = Esum;
         return true;  
      }
    }

    void D0_Angle_updateEtaPhi() {
      float EXsum = 0.0;
      float EYsum = 0.0;
      float EZsum = 0.0;
      typename list<const CalItem*>::iterator it;
      for(it=_LItems.begin(); it!=_LItems.end(); it++) {
	float p[4];
	(*it)->p4vec(p);
	EXsum += p[0];
	EYsum += p[1];
	EZsum += p[2];
      }
      //_Phi=kinem::phi(EYsum,EXsum);
      _Phi=inline_maths::phi(EYsum,EXsum);
      //_Eta=kinem::eta(EXsum,EYsum,EZsum);
      _Eta=inline_maths::eta(EXsum,EYsum,EZsum);
    } 

    void getItems(list<const CalItem*> &ecv) const {
      ecv.clear(); //ls 27/Feb/2010
      typename list<const CalItem*>::const_iterator it;
      for(it=_LItems.begin(); it!=_LItems.end(); it++) {
	ecv.push_back(*it);
      }
    }

    float Eta() {return _Eta;}
    float Phi() {return _Phi;}
    float Et()  {return _Et;}
    float E()  {return _E;}
    list<const CalItem*> &LItems() {return _LItems;}
    
  private:
    list<const CalItem*> _LItems;
    float _Eta;
    float _Phi;
    float _Et;
    float _E;
  }; //class TemporaryJet

  void getItemsInCone(list<const CalItem*> &tlist, float etaJet, float phiJet,
  		      float cone_radius, float zvertex_in) const; 
  void getItemsInCone_bis(list<const CalItem*> &tlist, float etaJet, 
               float phiJet,float cone_radius, float zvertex_in) const; 
  
public:
  
  vector< TemporaryJet > TempColl;  

};
  /////////////////////////////////////////////////////////

//template < class CalItem,class CalItemAddress,class CalIClusterChunk >
template < class CalItem >
//void ConeClusterAlgo <CalItem,CalItemAddress,CalIClusterChunk >:: 
void ConeClusterAlgo <CalItem >:: 
getItemsInCone(list<const CalItem*> &tlist, float etaJet, float phiJet, 
	       float cone_radius, float zvertex_in) const {
//
// provide the list of Items (towers, Cells...) containing the energy from a 
// jet of a given cone size
//
  float ZVERTEX_MAX=200.;
  float DMIN=80.;
  float DMAX=360.;
  float THETA_margin=0.022;
   
  float zvertex=zvertex_in;
  float d1,d2;
  float phi_d1, phi_d2;
  float theta_E1, r1, r2, z1, z2;
  float theta_d1, theta_d2, eta_d1, eta_d2;

  // Ignore very large vertex positions
  if (fabs(zvertex) > ZVERTEX_MAX ) zvertex=0.0;
 
  if (zvertex >=0. ) {
    d1=fabs(DMIN-zvertex);
    d2=fabs(DMAX+zvertex);
  } else {
    d1=fabs(DMAX-zvertex);
    d2=fabs(DMIN+zvertex);
  }
  
  // calculate theta of physics cone and find which eta's this intercepts
  // a the maximum points
  phi_d1 = phiJet+cone_radius;
  //theta_E1 = kinem::theta(etaJet+cone_radius);
  theta_E1 = inline_maths::theta(etaJet+cone_radius);
  z1 = zvertex+d1*cos(theta_E1);
  r1 = d1*sin(theta_E1);

  phi_d2 = phiJet-cone_radius;
  //theta_E1 = kinem::theta(etaJet-cone_radius);
  theta_E1 = inline_maths::theta(etaJet-cone_radius);
  z2 = zvertex+d2*cos(theta_E1);
  r2 = d2*sin(theta_E1);

  // maximum spread in detector theta
  theta_d1 = atan2(r1, z1);
  theta_d2 = atan2(r2, z2);

  // make sure they stay in the calorimeter 
  theta_d1=max(theta_d1, THETA_margin);
  theta_d2=max(theta_d2, THETA_margin);
  //theta_d1=min(kinem::PI-(double)THETA_margin, (double)theta_d1);
  theta_d1=min(inline_maths::PI-(double)THETA_margin, (double)theta_d1);
  //theta_d2=min(kinem::PI-(double)THETA_margin, (double)theta_d2);
  theta_d2=min(inline_maths::PI-(double)THETA_margin, (double)theta_d2);

  //eta_d1 = kinem::eta(theta_d1);
  eta_d1 = inline_maths::eta(theta_d1);
  //eta_d2 = kinem::eta(theta_d2);
  eta_d2 = inline_maths::eta(theta_d2);


  typename list<const CalItem*>::iterator it;
  for (it=tlist.begin() ; it != tlist.end() ; ) {
    //float eta_cur= (*it)->eta();
    //float phi_cur= (*it)->phi();
    float pz[4];
    (*it)->p4vec(pz);
    float eta_cur= E2eta(pz);
    float phi_cur= E2phi(pz);

    bool accepted = eta_cur < eta_d1 && eta_cur > eta_d2;
    //if ( phi_d2>0 && phi_d1<kinem::TWOPI ) {
    if ( phi_d2>0 && phi_d1<inline_maths::TWOPI ) {
      accepted = accepted && phi_cur<phi_d1 && phi_cur>phi_d2;
    }
    else{ // case the cone overlap the phi=0=2pi line
      if ( phi_d2>0 ){
	accepted = accepted && 
	  //((phi_cur>phi_d2 && phi_cur<kinem::TWOPI) || phi_cur<phi_d1-kinem::TWOPI);
	  ((phi_cur>phi_d2 && phi_cur<inline_maths::TWOPI) || phi_cur<phi_d1-inline_maths::TWOPI);
      }
      else{
	accepted = accepted && 
	  //((phi_cur<phi_d1 && phi_cur>0) || phi_cur>phi_d2+kinem::TWOPI);
	  ((phi_cur<phi_d1 && phi_cur>0) || phi_cur>phi_d2+inline_maths::TWOPI);
      }
    }
    if ( ! accepted ) it = tlist.erase(it);
    else ++it;

  }
}
  /////////////////////////////////////////////////////////
//template < class CalItem,class CalItemAddress,class CalIClusterChunk >
template < class CalItem >
//void ConeClusterAlgo <CalItem,CalItemAddress,CalIClusterChunk >:: 
void ConeClusterAlgo <CalItem>:: 
getItemsInCone_bis(list<const CalItem*> &tlist, float etaJet, float phiJet, 
	       float cone_radius, float zvertex_in) const {
//
// provide the list of Items (towers, Cells...) containing the energy from a 
// jet of a given cone size
//
// WARNING: this is only to be used to compare to RUN I cone jets
// 
  float ZVERTEX_MAX=200.;
  float DMIN=80.;
  float DMAX=360.;
  float THETA_margin=0.022;
   
  float zvertex=zvertex_in;
  float d1,d2;
  float phi_d1, phi_d2;
  float theta_E1, r1, r2, z1, z2;
  float theta_d1, theta_d2, eta_d1, eta_d2;

  // Ignore very large vertex positions
  if (fabs(zvertex) > ZVERTEX_MAX ) zvertex=0.0;
 
  if (zvertex >=0. ) {
    d1=fabs(DMIN-zvertex);
    d2=fabs(DMAX+zvertex);
  } else {
    d1=fabs(DMAX-zvertex);
    d2=fabs(DMIN+zvertex);
  }
  
  // calculate theta of physics cone and find which eta's this intercepts
  // a the maximum points
  
  phi_d1 = phiJet+cone_radius;
  //theta_E1 = kinem::theta(etaJet+cone_radius);
  theta_E1 = inline_maths::theta(etaJet+cone_radius);
  z1 = zvertex+d1*cos(theta_E1);
  r1 = d1*sin(theta_E1);

  phi_d2 = phiJet-cone_radius;
  //theta_E1 = kinem::theta(etaJet-cone_radius);
  theta_E1 = inline_maths::theta(etaJet-cone_radius);
  z2 = zvertex+d2*cos(theta_E1);
  r2 = d2*sin(theta_E1);

  // maximum spread in detector theta

  theta_d1 = atan2(r1, z1);
  theta_d2 = atan2(r2, z2);

  // make sure they stay in the calorimeter 

  theta_d1=max(theta_d1, THETA_margin);
  theta_d2=max(theta_d2, THETA_margin);
  //theta_d1=min(kinem::PI-(double)THETA_margin, (double)theta_d1);
  theta_d1=min(inline_maths::PI-(double)THETA_margin, (double)theta_d1);
  //theta_d2=min(kinem::PI-(double)THETA_margin, (double)theta_d2);
  theta_d2=min(inline_maths::PI-(double)THETA_margin, (double)theta_d2);


  //eta_d1 = kinem::eta(theta_d1);
  eta_d1 = inline_maths::eta(theta_d1);
  //eta_d2 = kinem::eta(theta_d2);
  eta_d2 = inline_maths::eta(theta_d2);

  float signe;
 
  if( eta_d1>=0.0 ) signe= 1.0;
  else signe= -1.0;
  int ietaMAX= eta_d1/0.1+signe;
  if(fabs(eta_d1)>=4.45) ietaMAX= 37*signe; 
  else if(fabs(eta_d1)>=4.1) ietaMAX= 36*signe; 
  else if(fabs(eta_d1)>=3.7) ietaMAX= 35*signe; 
  else if(fabs(eta_d1)>=3.42) ietaMAX= 34*signe; 
  else if(fabs(eta_d1)>=3.2) ietaMAX= 33*signe; 
  
  if( eta_d2>=0.0 ) signe= 1.0;
  else signe= -1.0;
  int ietaMIN= eta_d2/0.1+signe;
  if(fabs(eta_d2)>=4.45) ietaMIN= 37*signe; 
  else if(fabs(eta_d2)>=4.1) ietaMIN= 36*signe; 
  else if(fabs(eta_d2)>=3.7) ietaMIN= 35*signe; 
  else if(fabs(eta_d2)>=3.42) ietaMIN= 34*signe; 
  else if(fabs(eta_d2)>=3.2) ietaMIN= 33*signe; 

  //int iphiMAX= 64*phi_d1/(2.*kinem::PI)+1;
  int iphiMAX= 64*phi_d1/(2.*inline_maths::PI)+1;
  //int iphiMIN= 64*phi_d2/(2.*kinem::PI)+1;
  int iphiMIN= 64*phi_d2/(2.*inline_maths::PI)+1;
 
  typename list<const CalItem*>::iterator it;
  for (it=tlist.begin() ; it != tlist.end() ; ) {
    //float eta_cur= (*it)->eta();
    //float phi_cur= (*it)->phi();
    int ieta= (*it)->address().ieta();
    int iphi= (*it)->address().iphi();
    
    bool accepted = ieta<ietaMAX && ieta>ietaMIN;
    if ( iphiMIN>0 && iphiMAX<=64 ) {
      accepted = accepted && iphi<iphiMAX && iphi>iphiMIN;
    }
    else{ // case the cone overlap the phi=0=2pi line
      if ( iphiMIN>0 ){
	accepted = accepted && 
	  ((iphi>iphiMIN && iphi<=64) || iphi<iphiMAX-64);
      }
      else{
	accepted = accepted && 
	  ((iphi<iphiMAX && iphi>0) || iphi>iphiMIN+64);
      }
    }
    if ( ! accepted ) it = tlist.erase(it);
    else ++it;
    
  }
}
  /////////////////////////////////////////////////////////
//template < class CalItem,class CalItemAddress,class CalIClusterChunk >
template < class CalItem >
//inline void ConeClusterAlgo <CalItem,CalItemAddress,CalIClusterChunk >:: 
inline void ConeClusterAlgo <CalItem >:: 
print(ostream &os) const {
    os<<endl<<" CONE ALGORITHM, cone radius= "<<_CONErad<<endl<<
    " min E_T fraction= "<<_JETmne<<endl<<
    " minimum Delta_R separation between cones= "<<_TWOrad<<endl<<
    " shared E_T fraction threshold for combining jets= "<<_SPLifr<<endl;
}
  /////////////////////////////////////////////////////////

//template < class CalItem,class CalItemAddress,class CalIClusterChunk >
template < class CalItem >
//void ConeClusterAlgo <CalItem,CalItemAddress,CalIClusterChunk >:: 
void ConeClusterAlgo <CalItem >:: 
makeClusters(//const EnergyClusterReco* r,
	     std::list<CalItem> &jets,
	     list<const CalItem*> &itemlist, float Zvertex 
	     //, const EnergyClusterCollection<CalItemAddress> &preclu,
	     //CalIClusterChunk* chunkptr
	     //) const {
	     ) {

  // create an energy cluster collection for jets 
  //EnergyClusterCollection<CalItemAddress>* ptrcol;
  //r->createClusterCollection(chunkptr, ptrcol);
  std::vector<const CalItem*> ecv;
  for ( typename std::list<const CalItem*>::iterator it = itemlist.begin(); 
        it != itemlist.end(); it++) {
    ecv.push_back(*it);
  }


  // Initialize
  float Rcut= 1.E-06;
  if(_Increase_Delta_R) Rcut= 1.E-04;
  bool nojets;

  //vector< TemporaryJet > TempColl;  
  list< pair<float,float> > LTrack;

  // get a vector with pointers to EnergyCluster in the collection
  //vector<const EnergyCluster<CalItemAddress>*> ecv;
  //preclu.getClusters(ecv);

  // loop over all preclusters
  //typename vector<const EnergyCluster<CalItemAddress>*>::iterator jclu;
  typename std::vector<const CalItem*>::iterator jclu;
  for( jclu=ecv.begin(); jclu!=ecv.end(); jclu++ ) {
    ////const EnergyCluster<CalItemAddress>* ptr= *jclu;
    const CalItem* ptr= *jclu;
    //float PHIst= ptr->phi();
    //float ETAst= ptr->eta();
    float pz[4];
    ptr->p4vec(pz);
    float ETAst= E2eta(pz);
    float PHIst= E2phi(pz);

    //cout << "seed 4-vec ";
    //for ( int i = 0; i < 4; i++) cout << pz[i] << " ";
    //cout << endl;

    nojets= false;
    // check to see if precluster is too close to a found jet
    if(_Kill_Far_Clusters) {
      list< pair<float,float> >::iterator kj;
      for(kj=LTrack.begin(); kj!=LTrack.end(); kj++) {
	if(DELTA_r((*kj).first,ETAst,(*kj).second,PHIst)<_Far_Ratio*_CONErad) {
	  nojets= true;
	  //cout << "seed too close ! skip " << endl;
	  break;
	}
      }
    }
    if( nojets==false ) {
      TemporaryJet TJet(ETAst,PHIst);
      list< pair<int,float> > JETshare;

      // start of cone building loop
      int trial= 0;
      do{  
        trial++;
	//cout << " trial " << trial << endl;

	ETAst= TJet.Eta();
        PHIst= TJet.Phi();
        TJet.erase();

	//if(PHIst > kinem::TWOPI) PHIst= PHIst-kinem::TWOPI;
	if(PHIst > inline_maths::TWOPI) PHIst= PHIst-inline_maths::TWOPI;
	//if(PHIst < 0.0  ) PHIst= PHIst+kinem::TWOPI;
	if(PHIst < 0.0  ) PHIst= PHIst+inline_maths::TWOPI;
	//if( PHIst>kinem::TWOPI || PHIst<0.0 ) {
	if( PHIst>inline_maths::TWOPI || PHIst<0.0 ) {
          TJet.setEtaPhiEt(0.0,0.0,0.0);
	  break; // end loop do (illegal jet PHI) 
        }
	TJet.setEtaPhiEt(ETAst,PHIst,0.0);

	// calculate eta & phi limits for cone
        list<const CalItem*> Twlist(itemlist);

	getItemsInCone(Twlist,ETAst,PHIst,_CONErad,Zvertex); 
	//  only to compare with RUN I cone jets !   getItemsInCone_bis(Twlist,ETAst,PHIst,_CONErad,Zvertex); 

	// loop over the possible items for this cone
        typename list<const CalItem*>::iterator tk;
        for( tk= Twlist.begin(); tk!=Twlist.end(); tk++ ) {
	  float ETk =(*tk)->pT();
          // now done in CalCell/CalTower if((*tk)->E() < 0.0) ETk= -ETk;

          if( ETk > _Eitem_Negdrop ) { 
	    //float ETAk=(*tk)->eta();
	    //float PHIk=(*tk)->phi();
            float pz[4];
            (*tk)->p4vec(pz);
            float ETAk= E2eta(pz);
            float PHIk= E2phi(pz);

	    float dphi= fabs(PHIk-PHIst);
	    //if(dphi > kinem::TWOPI-dphi) {
	    if(dphi > inline_maths::TWOPI-dphi) {
              //if(PHIst < PHIk) PHIk= PHIk-kinem::TWOPI;
              if(PHIst < PHIk) PHIk= PHIk-inline_maths::TWOPI;
              //else PHIk= PHIk+kinem::TWOPI; 
              else PHIk= PHIk+inline_maths::TWOPI; 
            }

	    if( R2_bis(ETAk,PHIk,ETAst,PHIst) <= _CONErad*_CONErad ) { 
	      TJet.addItem(*tk);
	    }
	  }
	}// end loop tk
 
	if(TJet.updateEtaPhiEt()==false) {
	  //cout << " negative E jet ! drop " << endl;
	  break;
	}

	// require some minimum ET on every iteration
	if(_Jet_Et_Min_On_Iter) {
	  if( TJet.Et() < _JETmne*_Et_Min_Ratio ) {
	    //cout << " too low ET jet ! drop " << endl;
	    break; // end loop trial
          }
        }
  
	//cout << " R2 = " << R2_bis(TJet.Eta(),TJet.Phi(),ETAst,PHIst) << 
	//  " Rcut = " << Rcut << endl;
      }while(R2_bis(TJet.Eta(),TJet.Phi(),ETAst,PHIst)>=Rcut && trial<=50);
 
      if( TJet.Et() >= _JETmne ) {
	//cout << " jet accepted will check for overlaps " << endl; 
	if(_D0_Angle) TJet.D0_Angle_updateEtaPhi();
	//cout << "  after TJet.D0_Angle_updateEtaPhi() " << endl;
	
        // item also in another jet
        list<const CalItem*> Lst;
        TJet.getItems(Lst);
        typename list<const CalItem*>::iterator tk;
        for(tk=Lst.begin(); tk!=Lst.end(); tk++) {
	  float ETk=(*tk)->pT();
          // now done in CalCell/CalTower if((*tk)->E() < 0.0) ETk= -ETk;
          for(unsigned int kj=0; kj<TempColl.size(); kj++) {
	    if(TempColl[kj].ItemInJet(*tk)==true) {
	      list< pair<int,float> >::iterator pit;
              bool jetok= false;
              for(pit=JETshare.begin(); pit!=JETshare.end();pit++) {
                if((*pit).first == (int) kj) {
                  jetok= true;
                  (*pit).second+= ETk;
                  break;
                }
              }
              if(jetok==false) JETshare.push_back(make_pair(kj,ETk));
            }
          }
        }
	
	if(JETshare.size() >0) {
	  list< pair<int,float> >::iterator pit;
	  float Ssum= 0.0;
	  list< pair<int,float> >::iterator pitMAX=JETshare.begin();
	  for(pit=JETshare.begin(); pit!=JETshare.end(); pit++) {
	    Ssum+= (*pit).second;
	    if((*pit).second > (*pitMAX).second) pitMAX= pit;
	  }

          //int IJET= (*pitMAX).first;
	  bool splshr;
	  float Eleft= fabs(TJet.Et()-Ssum);
	  float Djets= TempColl[(*pitMAX).first].dist_R2(TJet);
	  if(Djets <= _TWOrad || Eleft <= _Thresh_Diff_Et) { 
	    TJet.erase();
	    splshr= false;
	  }
	  else {
	    float SharedFr=Ssum/min(TempColl[(*pitMAX).first].Et(),TJet.Et());
	    if(JETshare.size() >1) {
	      typename list<const CalItem*>::iterator tk;
	      for(tk=TJet.LItems().begin(); tk!=TJet.LItems().end(); ) {
                bool found = false;
		list< pair<int,float> >::iterator pit;
		for(pit=JETshare.begin(); pit!=JETshare.end();pit++) {
		  if((*pit).first!=(*pitMAX).first) { 
		    if(TempColl[(*pit).first].ItemInJet(*tk)==true) {
		      tk = TJet.LItems().erase(tk);
		      found = true;
		      break;
		    }
		  }
		}
		if ( !found ) ++tk;
	      }
	    }

	    splshr= TempColl[(*pitMAX).first].share_jets(TJet,SharedFr,_SPLifr);

	    if( splshr==true ) {
	      //cout << " jet splitted due to overlaps " << endl;
	      TempColl[(*pitMAX).first].updateEtaPhiEt();
	      TJet.updateEtaPhiEt();
	      if(_D0_Angle) TJet.D0_Angle_updateEtaPhi();
	      if(_D0_Angle) TempColl[(*pitMAX).first].D0_Angle_updateEtaPhi();
	      TempColl.push_back(TJet);  
	      LTrack.push_back(make_pair(TJet.Eta(),TJet.Phi()));
	    }
	    else {
	      //cout << " jet merged due to overlaps " << endl;
	      TempColl[(*pitMAX).first].updateEtaPhiEt();
	      if(_D0_Angle) TempColl[(*pitMAX).first].D0_Angle_updateEtaPhi();
	    }  
	  }
	}
	else {
	  TJet.updateEtaPhiEt();
	  if(_D0_Angle) TJet.D0_Angle_updateEtaPhi();
          TempColl.push_back(TJet);  
          LTrack.push_back(make_pair(TJet.Eta(),TJet.Phi()));
	}
      } //JETmne
    } //nojets
  }// end loop jclu 

  for(unsigned int i=0; i<TempColl.size(); i++) {
    //EnergyCluster<CalItemAddress>* ptrclu;
    CalItem ptrclu;
    //r->createCluster(ptrcol,ptrclu);
    list<const CalItem*> Vi;
    TempColl[i].getItems(Vi);
    typename list<const CalItem*>::iterator it;
    for(it=Vi.begin(); it!=Vi.end(); it++) {
      const CalItem* ptr= *it;
      //CalItemAddress addr= ptr->address();
      float p[4];
      ptr->p4vec(p);
      //float emE= ptr->emE();
      //r->addClusterItem(ptrclu,addr,p,emE);
      ptrclu.Add(*ptr);
    }
    jets.push_back(ptrclu);
  }

}// end 

} //namespace d0runi

FASTJET_END_NAMESPACE

#endif  //  CONECLUSTERALGO_H