1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
|
SUBROUTINE PXCONE(MODE,NTRAK,ITKDM,PTRAK,CONER,EPSLON,OVLIM,
+ MXJET,NJET,PJET,IPASS,IJMUL,IERR)
*.*********************************************************
*. ------
*. PXCONE
*. ------
*.
*. Code downloaded from the following web page
*.
*. http://aliceinfo.cern.ch/alicvs/viewvc/JETAN/pxcone.F?view=markup&pathrev=v4-05-04
*.
*. on 17/10/2006 by G. Salam. Permission subsequently granted by Michael
*. H. Seymour (on behalf of the PxCone authors) for this code to be
*. distributed together with FastJet under the terms of the GNU Public
*. License v2 (see the file COPYING in the main FastJet directory).
*.
*.********** Pre Release Version 26.2.93
*.
*. Driver for the Cone Jet finding algorithm of L.A. del Pozo.
*. Based on algorithm from D.E. Soper.
*. Finds jets inside cone of half angle CONER with energy > EPSLON.
*. Jets which receive more than a fraction OVLIM of their energy from
*. overlaps with other jets are excluded.
*. Output jets are ordered in energy.
*. If MODE.EQ.2 momenta are stored as (eta,phi,<empty>,pt)
*. Usage :
*.
*. INTEGER ITKDM,MXTRK
*. PARAMETER (ITKDM=4.or.more,MXTRK=1.or.more)
*. INTEGER MXJET, MXTRAK, MXPROT
*. PARAMETER (MXJET=10,MXTRAK=500,MXPROT=500)
*. INTEGER IPASS (MXTRAK),IJMUL (MXJET)
*. INTEGER NTRAK,NJET,IERR,MODE
*. DOUBLE PRECISION PTRAK (ITKDM,MXTRK),PJET (5,MXJET)
*. DOUBLE PRECISION CONER, EPSLON, OVLIM
*. NTRAK = 1.to.MXTRAK
*. CONER = ...
*. EPSLON = ...
*. OVLIM = ...
*. CALL PXCONE (MODE,NTRAK,ITKDM,PTRAK,CONER,EPSLON,OVLIM,MXJET,
*. + NJET,PJET,IPASS,IJMUL,IERR)
*.
*. INPUT : MODE 1=>e+e-, 2=>hadron-hadron
*. INPUT : NTRAK Number of particles
*. INPUT : ITKDM First dimension of PTRAK array
*. INPUT : PTRAK Array of particle 4-momenta (Px,Py,Pz,E)
*. INPUT : CONER Cone size (half angle) in radians
*. INPUT : EPSLON Minimum Jet energy (GeV)
*. INPUT : OVLIM Maximum fraction of overlap energy in a jet
*. INPUT : MXJET Maximum possible number of jets
*. OUTPUT : NJET Number of jets found
*. OUTPUT : PJET 5-vectors of jets
*. OUTPUT : IPASS(k) Particle k belongs to jet number IPASS(k)
*. IPASS = -1 if not assosciated to a jet
*. OUTPUT : IJMUL(i) Jet i contains IJMUL(i) particles
*. OUTPUT : IERR = 0 if all is OK ; = -1 otherwise
*.
*. CALLS : PXSEAR, PXSAME, PXNEW, PXTRY, PXORD, PXUVEC, PXOLAP
*. CALLED : User
*.
*. AUTHOR : L.A. del Pozo
*. CREATED : 26-Feb-93
*. LAST MOD : 2-Mar-93
*.
*. Modification Log.
*. 25-Feb-07: G P Salam - fix bugs concerning 2pi periodicity in eta phi mode
*. - added commented code to get consistent behaviour
*. regardless of particle order (replaces n-way
*. midpoints with 2-way midpoints however...)
*. 2-Jan-97: M Wobisch - fix bug concerning COS2R in eta phi mode
*. 4-Apr-93: M H Seymour - Change 2d arrays to 1d in PXTRY & PXNEW
*. 2-Apr-93: M H Seymour - Major changes to add boost-invariant mode
*. 1-Apr-93: M H Seymour - Increase all array sizes
*. 30-Mar-93: M H Seymour - Change all REAL variables to DOUBLE PRECISION
*. 30-Mar-93: M H Seymour - Change OVLIM into an input parameter
*. 2-Mar-93: L A del Pozo - Fix Bugs in PXOLAP
*. 1-Mar-93: L A del Pozo - Remove Cern library routine calls
*. 1-Mar-93: L A del Pozo - Add Print out of welcome and R and Epsilon
*.
*.*********************************************************
C+SEQ,DECLARE.
*** External Arrays
INTEGER ITKDM,MXJET,NTRAK,NJET,IERR,MODE
INTEGER IPASS (NTRAK),IJMUL (MXJET)
DOUBLE PRECISION PTRAK (ITKDM,NTRAK),PJET (5,MXJET),
+ CONER, EPSLON, OVLIM
*** Internal Arrays
INTEGER MXPROT, MXTRAK
PARAMETER (MXPROT=5000, MXTRAK=5000)
DOUBLE PRECISION PP(4,MXTRAK), PU(3,MXTRAK), PJ(4,MXPROT)
LOGICAL JETLIS(MXPROT,MXTRAK)
*** Used in the routine.
DOUBLE PRECISION COSR,COS2R, VSEED(3), VEC1(3), VEC2(3),PTSQ,PPSQ,
+ COSVAL,PXMDPI
cMWobisch
DOUBLE PRECISION RSEP
cMWobisch
LOGICAL UNSTBL
INTEGER I,J,N,MU,N1,N2, ITERR, NJTORG
INTEGER NCALL, NPRINT
DOUBLE PRECISION ROLD, EPSOLD, OVOLD
SAVE NCALL,NPRINT,ROLD, EPSOLD, OVOLD
DATA NCALL,NPRINT /0,0/
DATA ROLD,EPSOLD,OVOLD/0.,0.,0./
cMWobisch
c***************************************
RSEP = 2D0
c***************************************
cMWobisch
IERR=0
*
*** INITIALIZE
IF(NCALL.LE.0) THEN
ROLD = 0.
EPSOLD = 0.
OVOLD = 0.
ENDIF
NCALL = NCALL + 1
*
*** Print welcome and Jetfinder parameters
IF((CONER.NE.ROLD .OR. EPSLON.NE.EPSOLD .OR. OVLIM.NE.OVOLD)
+ .AND. NPRINT.LE.10) THEN
WRITE (6,*)
WRITE (6,*) ' *********** PXCONE: Cone Jet-finder ***********'
WRITE (6,*) ' Written by Luis Del Pozo of OPAL'
WRITE (6,*) ' Modified for eta-phi by Mike Seymour'
WRITE (6,*) ' Includes bug fixes by Wobisch, Salam'
WRITE(6,1000)' Cone Size R = ',CONER,' Radians'
WRITE(6,1001)' Min Jet energy Epsilon = ',EPSLON,' GeV'
WRITE(6,1002)' Overlap fraction parameter = ',OVLIM
WRITE (6,*) ' PXCONE is not a supported product and is'
WRITE (6,*) ' is provided for comparative purposes only'
WRITE (6,*) ' ***********************************************'
cMWobisch
IF (RSEP .lt. 1.999) THEN
WRITE(6,*) ' '
WRITE (6,*) ' ******************************************'
WRITE (6,*) ' ******************************************'
WRITE(6,*) ' M Wobisch: private change !!!!!!!!!!!! '
WRITE(6,*) ' Rsep is set to ',RSEP
WRITE(6,*) ' this is ONLY meaningful in a NLO calculation'
WRITE(6,*) ' ------------------------ '
WRITE(6,*) ' please check what you''re doing!!'
WRITE(6,*) ' or ask: Markus.Wobisch@desy.de --'
WRITE (6,*) ' ******************************************'
WRITE (6,*) ' ******************************************'
WRITE (6,*) ' ******************************************'
WRITE(6,*) ' '
WRITE(6,*) ' '
ENDIF
cMWobisch
WRITE (6,*)
1000 FORMAT(A18,F5.2,A10)
1001 FORMAT(A29,F5.2,A5)
1002 FORMAT(A33,F5.2)
NPRINT = NPRINT + 1
ROLD=CONER
EPSOLD=EPSLON
OVOLD=OVLIM
ENDIF
*
*** Copy calling array PTRAK to internal array PP(4,NTRAK)
*
IF (NTRAK .GT. MXTRAK) THEN
WRITE (6,*) ' PXCONE: Ntrak too large: ',NTRAK
IERR=-1
RETURN
ENDIF
IF (MODE.NE.2) THEN
DO 100 I=1, NTRAK
DO 101 J=1,4
PP(J,I)=PTRAK(J,I)
101 CONTINUE
100 CONTINUE
ELSE
*** Converting to eta,phi,pt if necessary
DO 104 I=1,NTRAK
PTSQ=PTRAK(1,I)**2+PTRAK(2,I)**2
PPSQ=(SQRT(PTSQ+PTRAK(3,I)**2)+ABS(PTRAK(3,I)))**2
IF (PTSQ.LE.4.25E-18*PPSQ) THEN
PP(1,I)=20
ELSE
PP(1,I)=0.5*LOG(PPSQ/PTSQ)
ENDIF
PP(1,I)=SIGN(PP(1,I),PTRAK(3,I))
IF (PTSQ.EQ.0) THEN
PP(2,I)=0
ELSE
PP(2,I)=ATAN2(PTRAK(2,I),PTRAK(1,I))
ENDIF
PP(3,I)=0
PP(4,I)=SQRT(PTSQ)
PU(1,I)=PP(1,I)
PU(2,I)=PP(2,I)
PU(3,I)=PP(3,I)
104 CONTINUE
ENDIF
*
*** Zero output variables
*
NJET=0
DO 102 I = 1, NTRAK
DO 103 J = 1, MXPROT
JETLIS(J,I) = .FALSE.
103 CONTINUE
102 CONTINUE
CALL PXZERV(4*MXPROT,PJ)
CALL PXZERI(MXJET,IJMUL)
*
IF (MODE.NE.2) THEN
COSR = COS(CONER)
COS2R = COS(CONER)
ELSE
*** Purely for convenience, work in terms of 1-R**2
COSR = 1-CONER**2
cMW -- select Rsep: 1-(Rsep*CONER)**2
COS2R = 1-(RSEP*CONER)**2
cORIGINAL COS2R = 1-(2*CONER)**2
ENDIF
UNSTBL = .FALSE.
IF (MODE.NE.2) THEN
CALL PXUVEC(NTRAK,PP,PU,IERR)
IF (IERR .NE. 0) RETURN
ENDIF
*** Look for jets using particle diretions as seed axes
*
DO 110 N = 1,NTRAK
DO 120 MU = 1,3
VSEED(MU) = PU(MU,N)
120 CONTINUE
CALL PXSEAR(MODE,COSR,NTRAK,PU,PP,VSEED,
& NJET,JETLIS,PJ,UNSTBL,IERR)
IF (IERR .NE. 0) RETURN
110 CONTINUE
cMW - for Rsep=1 goto 145
c GOTO 145
*** Now look between all pairs of jets as seed axes.
c NJTORG = NJET ! GPS -- to get consistent behaviour (2-way midpnts)
c DO 140 N1 = 1,NJTORG-1 ! GPS -- to get consistent behaviour (2-way midpnts)
DO 140 N1 = 1,NJET-1
VEC1(1)=PJ(1,N1)
VEC1(2)=PJ(2,N1)
VEC1(3)=PJ(3,N1)
IF (MODE.NE.2) CALL PXNORV(3,VEC1,VEC1,ITERR)
C DO 150 N2 = N1+1,NJTORG ! GPS -- to get consistent behaviour
DO 150 N2 = N1+1,NJET
VEC2(1)=PJ(1,N2)
VEC2(2)=PJ(2,N2)
VEC2(3)=PJ(3,N2)
IF (MODE.NE.2) CALL PXNORV(3,VEC2,VEC2,ITERR)
CALL PXADDV(3,VEC1,VEC2,VSEED,ITERR)
IF (MODE.NE.2) THEN
CALL PXNORV(3,VSEED,VSEED,ITERR)
ELSE
VSEED(1)=VSEED(1)/2
!VSEED(2)=VSEED(2)/2
! GPS 25/02/07
VSEED(2)=PXMDPI(VEC1(2)+0.5d0*PXMDPI(VEC2(2)-VEC1(2)))
ENDIF
C---ONLY BOTHER IF THEY ARE BETWEEN 1 AND 2 CONE RADII APART
IF (MODE.NE.2) THEN
COSVAL=VEC1(1)*VEC2(1)+VEC1(2)*VEC2(2)+VEC1(3)*VEC2(3)
ELSE
IF (ABS(VEC1(1)).GE.20.OR.ABS(VEC2(1)).GE.20) THEN
COSVAL=-1000
ELSE
COSVAL=1-
+ ((VEC1(1)-VEC2(1))**2+PXMDPI(VEC1(2)-VEC2(2))**2)
ENDIF
ENDIF
IF (COSVAL.LE.COSR.AND.COSVAL.GE.COS2R)
+ CALL PXSEAR(MODE,COSR,NTRAK,PU,PP,VSEED,NJET,
+ JETLIS,PJ,UNSTBL,IERR)
c CALL PXSEAR(MODE,COSR,NTRAK,PU,PP,VSEED,NJET,
c + JETLIS,PJ,UNSTBL,IERR)
IF (IERR .NE. 0) RETURN
150 CONTINUE
140 CONTINUE
IF (UNSTBL) THEN
IERR=-1
WRITE (6,*) ' PXCONE: Too many iterations to find a proto-jet'
RETURN
ENDIF
145 CONTINUE
*** Now put the jet list into order by jet energy, eliminating jets
*** with energy less than EPSLON.
CALL PXORD(EPSLON,NJET,NTRAK,JETLIS,PJ)
*
*** Take care of jet overlaps
CALL PXOLAP(MODE,NJET,NTRAK,JETLIS,PJ,PP,OVLIM)
*
*** Order jets again as some have been eliminated, or lost energy.
CALL PXORD(EPSLON,NJET,NTRAK,JETLIS,PJ)
*
*** All done!, Copy output into output arrays
IF (NJET .GT. MXJET) THEN
WRITE (6,*) ' PXCONE: Found more than MXJET jets'
IERR=-1
GOTO 99
ENDIF
IF (MODE.NE.2) THEN
DO 300 I=1, NJET
DO 310 J=1,4
PJET(J,I)=PJ(J,I)
310 CONTINUE
300 CONTINUE
ELSE
DO 315 I=1, NJET
PJET(1,I)=PJ(4,I)*COS(PJ(2,I))
PJET(2,I)=PJ(4,I)*SIN(PJ(2,I))
PJET(3,I)=PJ(4,I)*SINH(PJ(1,I))
PJET(4,I)=PJ(4,I)*COSH(PJ(1,I))
315 CONTINUE
ENDIF
DO 320 I=1, NTRAK
IPASS(I)=-1
DO 330 J=1, NJET
IF (JETLIS(J,I)) THEN
IJMUL(J)=IJMUL(J)+1
IPASS(I)=J
ENDIF
330 CONTINUE
320 CONTINUE
99 RETURN
END
*CMZ : 1.06/00 28/02/94 15.44.44 by P. Schleper
*-- Author :
C-----------------------------------------------------------------------
SUBROUTINE PXNORV(N,A,B,ITERR)
INTEGER I,N,ITERR
DOUBLE PRECISION A(N),B(N),C
C=0
DO 10 I=1,N
C=C+A(I)**2
10 CONTINUE
IF (C.LE.0) RETURN
C=1/SQRT(C)
DO 20 I=1,N
B(I)=A(I)*C
20 CONTINUE
END
*CMZ : 2.00/00 10/01/95 10.17.57 by P. Schleper
*CMZ : 1.06/00 15/03/94 12.17.46 by P. Schleper
*-- Author :
*
C+DECK,PXOLAP.
SUBROUTINE PXOLAP(MODE,NJET,NTRAK,JETLIS,PJ,PP,OVLIM)
*
*** Looks for particles assigned to more than 1 jet, and reassigns them
*** If more than a fraction OVLIM of a jet's energy is contained in
*** higher energy jets, that jet is neglected.
*** Particles assigned to the jet closest in angle (a la CDF, Snowmass).
C+SEQ,DECLARE.
INTEGER MXTRAK, MXPROT
PARAMETER (MXTRAK=5000,MXPROT=5000)
INTEGER NJET, NTRAK, MODE
LOGICAL JETLIS(MXPROT,MXTRAK)
DOUBLE PRECISION PJ(4,MXPROT),PP(4,MXTRAK),PXMDPI
INTEGER I,J,N,MU
LOGICAL OVELAP
DOUBLE PRECISION EOVER
DOUBLE PRECISION OVLIM
INTEGER ITERR, IJMIN, IJET(MXPROT), NJ
DOUBLE PRECISION VEC1(3), VEC2(3), COST, THET, THMIN
DATA IJMIN/0/
*
IF (NJET.LE.1) RETURN
*** Look for jets with large overlaps with higher energy jets.
DO 100 I = 2,NJET
*** Find overlap energy between jets I and all higher energy jets.
EOVER = 0.0
DO 110 N = 1,NTRAK
OVELAP = .FALSE.
DO 120 J= 1,I-1
IF (JETLIS(I,N).AND.JETLIS(J,N)) THEN
OVELAP = .TRUE.
ENDIF
120 CONTINUE
IF (OVELAP) THEN
EOVER = EOVER + PP(4,N)
ENDIF
110 CONTINUE
*** Is the fraction of energy shared larger than OVLIM?
IF (EOVER.GT.OVLIM*PJ(4,I)) THEN
*** De-assign all particles from Jet I
DO 130 N = 1,NTRAK
JETLIS(I,N) = .FALSE.
130 CONTINUE
ENDIF
100 CONTINUE
*** Now there are no big overlaps, assign every particle in
*** more than 1 jet to the closet jet.
*** Any particles now in more than 1 jet are assigned to the CLOSET
*** jet (in angle).
DO 140 I=1,NTRAK
NJ=0
DO 150 J=1, NJET
IF(JETLIS(J,I)) THEN
NJ=NJ+1
IJET(NJ)=J
ENDIF
150 CONTINUE
IF (NJ .GT. 1) THEN
*** Particle in > 1 jet - calc angles...
VEC1(1)=PP(1,I)
VEC1(2)=PP(2,I)
VEC1(3)=PP(3,I)
THMIN=0.
DO 160 J=1,NJ
VEC2(1)=PJ(1,IJET(J))
VEC2(2)=PJ(2,IJET(J))
VEC2(3)=PJ(3,IJET(J))
IF (MODE.NE.2) THEN
CALL PXANG3(VEC1,VEC2,COST,THET,ITERR)
ELSE
THET=(VEC1(1)-VEC2(1))**2+PXMDPI(VEC1(2)-VEC2(2))**2
ENDIF
IF (J .EQ. 1) THEN
THMIN=THET
IJMIN=IJET(J)
ELSEIF (THET .LT. THMIN) THEN
THMIN=THET
IJMIN=IJET(J)
ENDIF
160 CONTINUE
*** Assign track to IJMIN
DO 170 J=1,NJET
JETLIS(J,I) = .FALSE.
170 CONTINUE
JETLIS(IJMIN,I)=.TRUE.
ENDIF
140 CONTINUE
*** Recompute PJ
DO 200 I = 1,NJET
DO 210 MU = 1,4
PJ(MU,I) = 0.0
210 CONTINUE
DO 220 N = 1,NTRAK
IF( JETLIS(I,N) ) THEN
IF (MODE.NE.2) THEN
DO 230 MU = 1,4
PJ(MU,I) = PJ(MU,I) + PP(MU,N)
230 CONTINUE
ELSE
PJ(1,I)=PJ(1,I)
+ + PP(4,N)/(PP(4,N)+PJ(4,I))*(PP(1,N)-PJ(1,I))
c GPS 25/02/07
PJ(2,I)=PXMDPI(PJ(2,I)
+ + PP(4,N)/(PP(4,N)+PJ(4,I))*PXMDPI(PP(2,N)-PJ(2,I)))
c PJ(2,I)=PJ(2,I)
c + + PP(4,N)/(PP(4,N)+PJ(4,I))*PXMDPI(PP(2,N)-PJ(2,I))
PJ(4,I)=PJ(4,I)+PP(4,N)
ENDIF
ENDIF
220 CONTINUE
200 CONTINUE
RETURN
END
*CMZ : 2.00/00 10/01/95 10.17.57 by P. Schleper
*CMZ : 1.06/00 14/03/94 15.37.45 by P. Schleper
*-- Author :
*
C+DECK,PXORD.
SUBROUTINE PXORD(EPSLON,NJET,NTRAK,JETLIS,PJ)
*
*** Routine to put jets into order and eliminate tose less than EPSLON
C+SEQ,DECLARE.
INTEGER MXTRAK,MXPROT
PARAMETER (MXTRAK=5000,MXPROT=5000)
INTEGER I, J, INDEX(MXPROT)
DOUBLE PRECISION PTEMP(4,MXPROT), ELIST(MXPROT)
INTEGER NJET,NTRAK
LOGICAL JETLIS(MXPROT,MXTRAK)
LOGICAL LOGTMP(MXPROT,MXTRAK)
DOUBLE PRECISION EPSLON,PJ(4,MXPROT)
*** Puts jets in order of energy: 1 = highest energy etc.
*** Then Eliminate jets with energy below EPSLON
*
*** Copy input arrays.
DO 100 I=1,NJET
DO 110 J=1,4
PTEMP(J,I)=PJ(J,I)
110 CONTINUE
DO 120 J=1,NTRAK
LOGTMP(I,J)=JETLIS(I,J)
120 CONTINUE
100 CONTINUE
DO 150 I=1,NJET
ELIST(I)=PJ(4,I)
150 CONTINUE
*** Sort the energies...
CALL PXSORV(NJET,ELIST,INDEX,'I')
*** Fill PJ and JETLIS according to sort ( sort is in ascending order!!)
DO 200 I=1, NJET
DO 210 J=1,4
PJ(J,I)=PTEMP(J,INDEX(NJET+1-I))
210 CONTINUE
DO 220 J=1,NTRAK
JETLIS(I,J)=LOGTMP(INDEX(NJET+1-I),J)
220 CONTINUE
200 CONTINUE
** Jets are now in order
*** Now eliminate jets with less than Epsilon energy
DO 300, I=1, NJET
IF (PJ(4,I) .LT. EPSLON) THEN
NJET=NJET-1
PJ(4,I)=0.
ENDIF
300 CONTINUE
RETURN
END
********************************************************************
*CMZ : 2.00/00 10/01/95 10.17.57 by P. Schleper
*CMZ : 1.06/00 14/03/94 15.37.44 by P. Schleper
*-- Author :
C+DECK,PXSEAR.
SUBROUTINE PXSEAR(MODE,COSR,NTRAK,PU,PP,VSEED,NJET,
+ JETLIS,PJ,UNSTBL,IERR)
*
C+SEQ,DECLARE.
INTEGER MXTRAK, MXPROT
PARAMETER (MXTRAK=5000,MXPROT=5000)
INTEGER NTRAK, IERR, MODE
DOUBLE PRECISION COSR,PU(3,MXTRAK),PP(4,MXTRAK),VSEED(3)
LOGICAL UNSTBL
LOGICAL JETLIS(MXPROT,MXTRAK)
INTEGER NJET
DOUBLE PRECISION PJ(4,MXPROT)
*** Using VSEED as a trial axis , look for a stable jet.
*** Check stable jets against those already found and add to PJ.
*** Will try up to MXITER iterations to get a stable set of particles
*** in the cone.
INTEGER MU,N,ITER
LOGICAL PXSAME,PXNEW,OK
LOGICAL NEWLIS(MXTRAK),OLDLIS(MXTRAK)
DOUBLE PRECISION OAXIS(3),NAXIS(3),PNEW(4)
INTEGER MXITER
PARAMETER(MXITER = 30)
*
DO 100 MU=1,3
OAXIS(MU) = VSEED(MU)
100 CONTINUE
DO 110 N = 1,NTRAK
OLDLIS(N) = .FALSE.
110 CONTINUE
DO 120 ITER = 1,MXITER
CALL PXTRY(MODE,COSR,NTRAK,PU,PP,OAXIS,NAXIS,PNEW,NEWLIS,OK)
*** Return immediately if there were no particles in the cone.
IF (.NOT.OK) THEN
RETURN
ENDIF
IF(PXSAME(NEWLIS,OLDLIS,NTRAK)) THEN
*** We have a stable jet.
IF (PXNEW(NEWLIS,JETLIS,NTRAK,NJET)) THEN
*** And the jet is a new one. So add it to our arrays.
*** Check arrays are big anough...
IF (NJET .EQ. MXPROT) THEN
WRITE (6,*) ' PXCONE: Found more than MXPROT proto-jets'
IERR = -1
RETURN
ENDIF
NJET = NJET + 1
DO 130 N = 1,NTRAK
JETLIS(NJET,N) = NEWLIS(N)
130 CONTINUE
DO 140 MU=1,4
PJ(MU,NJET)=PNEW(MU)
140 CONTINUE
ENDIF
RETURN
ENDIF
*** The jet was not stable, so we iterate again
DO 150 N=1,NTRAK
OLDLIS(N)=NEWLIS(N)
150 CONTINUE
DO 160 MU=1,3
OAXIS(MU)=NAXIS(MU)
160 CONTINUE
120 CONTINUE
UNSTBL = .TRUE.
RETURN
END
*CMZ : 1.06/00 28/02/94 15.44.44 by P. Schleper
*-- Author :
C-----------------------------------------------------------------------
SUBROUTINE PXSORV(N,A,K,OPT)
C Sort A(N) into ascending order
C OPT = 'I' : return index array K only
C OTHERWISE : return sorted A and index array K
C-----------------------------------------------------------------------
INTEGER NMAX
PARAMETER (NMAX=5000)
*
* INTEGER N,I,J,K(N),IL(NMAX),IR(NMAX)
*LUND
INTEGER N,I,J,K(NMAX),IL(NMAX),IR(NMAX)
CHARACTER OPT
*
* DOUBLE PRECISION A(N),B(NMAX)
DOUBLE PRECISION A(NMAX),B(NMAX)
*LUND
IF (N.GT.NMAX) STOP 'Sorry, not enough room in Mike''s PXSORV'
IL(1)=0
IR(1)=0
DO 10 I=2,N
IL(I)=0
IR(I)=0
J=1
2 IF(A(I).GT.A(J)) GO TO 5
3 IF(IL(J).EQ.0) GO TO 4
J=IL(J)
GO TO 2
4 IR(I)=-J
IL(J)=I
GO TO 10
5 IF(IR(J).LE.0) GO TO 6
J=IR(J)
GO TO 2
6 IR(I)=IR(J)
IR(J)=I
10 CONTINUE
I=1
J=1
GO TO 8
20 J=IL(J)
8 IF(IL(J).GT.0) GO TO 20
9 K(I)=J
B(I)=A(J)
I=I+1
IF(IR(J)) 12,30,13
13 J=IR(J)
GO TO 8
12 J=-IR(J)
GO TO 9
30 IF(OPT.EQ.'I') RETURN
DO 31 I=1,N
31 A(I)=B(I)
999 END
*********************************************************************
*CMZ : 2.00/00 10/01/95 10.17.57 by P. Schleper
*CMZ : 1.06/00 14/03/94 15.37.44 by P. Schleper
*-- Author :
*
C+DECK,PXTRY.
SUBROUTINE PXTRY(MODE,COSR,NTRAK,PU,PP,OAXIS,NAXIS,
+ PNEW,NEWLIS,OK)
*
C+SEQ,DECLARE.
INTEGER MXTRAK
PARAMETER (MXTRAK=5000)
INTEGER NTRAK,MODE
*** Note that although PU and PP are assumed to be 2d arrays, they
*** are used as 1d in this routine for efficiency
DOUBLE PRECISION COSR,PU(3*MXTRAK),PP(4*MXTRAK),OAXIS(3),PXMDPI
LOGICAL OK
LOGICAL NEWLIS(MXTRAK)
DOUBLE PRECISION NAXIS(3),PNEW(4)
*** Finds all particles in cone of size COSR about OAXIS direction.
*** Calculates 4-momentum sum of all particles in cone (PNEW) , and
*** returns this as new jet axis NAXIS (Both unit Vectors)
INTEGER N,MU,NPU,NPP
DOUBLE PRECISION COSVAL,NORMSQ,NORM
*
OK = .FALSE.
DO 100 MU=1,4
PNEW(MU)=0.0
100 CONTINUE
NPU=-3
NPP=-4
DO 110 N=1,NTRAK
NPU=NPU+3
NPP=NPP+4
IF (MODE.NE.2) THEN
COSVAL=0.0
DO 120 MU=1,3
COSVAL=COSVAL+OAXIS(MU)*PU(MU+NPU)
120 CONTINUE
ELSE
IF (ABS(PU(1+NPU)).GE.20.OR.ABS(OAXIS(1)).GE.20) THEN
COSVAL=-1000
ELSE
COSVAL=1-
+ ((OAXIS(1)-PU(1+NPU))**2+PXMDPI(OAXIS(2)-PU(2+NPU))**2)
ENDIF
ENDIF
IF (COSVAL.GE.COSR)THEN
NEWLIS(N) = .TRUE.
OK = .TRUE.
IF (MODE.NE.2) THEN
DO 130 MU=1,4
PNEW(MU) = PNEW(MU) + PP(MU+NPP)
130 CONTINUE
ELSE
PNEW(1)=PNEW(1)
+ + PP(4+NPP)/(PP(4+NPP)+PNEW(4))*(PP(1+NPP)-PNEW(1))
c PNEW(2)=PNEW(2)
c + + PP(4+NPP)/(PP(4+NPP)+PNEW(4))
c + *PXMDPI(PP(2+NPP)-PNEW(2))
! GPS 25/02/07
PNEW(2)=PXMDPI(PNEW(2)
+ + PP(4+NPP)/(PP(4+NPP)+PNEW(4))
+ *PXMDPI(PP(2+NPP)-PNEW(2)))
PNEW(4)=PNEW(4)+PP(4+NPP)
ENDIF
ELSE
NEWLIS(N)=.FALSE.
ENDIF
110 CONTINUE
*** If there are particles in the cone, calc new jet axis
IF (OK) THEN
IF (MODE.NE.2) THEN
NORMSQ = 0.0
DO 140 MU = 1,3
NORMSQ = NORMSQ + PNEW(MU)**2
140 CONTINUE
NORM = SQRT(NORMSQ)
ELSE
NORM = 1
ENDIF
DO 150 MU=1,3
NAXIS(MU) = PNEW(MU)/NORM
150 CONTINUE
ENDIF
RETURN
END
*********************************************************************
*CMZ : 2.00/00 10/01/95 10.17.57 by P. Schleper
*CMZ : 1.06/00 28/02/94 15.44.44 by P. Schleper
*-- Author :
C+DECK,PXUVEC.
*
SUBROUTINE PXUVEC(NTRAK,PP,PU,IERR)
*
*** Routine to calculate unit vectors PU of all particles PP
C+SEQ,DECLARE.
INTEGER MXTRAK
PARAMETER (MXTRAK=5000)
INTEGER NTRAK, IERR
DOUBLE PRECISION PP(4,MXTRAK)
DOUBLE PRECISION PU(3,MXTRAK)
INTEGER N,MU
DOUBLE PRECISION MAG
DO 100 N=1,NTRAK
MAG=0.0
DO 110 MU=1,3
MAG=MAG+PP(MU,N)**2
110 CONTINUE
MAG=SQRT(MAG)
IF (MAG.EQ.0.0) THEN
WRITE(6,*)' PXCONE: An input particle has zero mod(p)'
IERR=-1
RETURN
ENDIF
DO 120 MU=1,3
PU(MU,N)=PP(MU,N)/MAG
120 CONTINUE
100 CONTINUE
RETURN
END
*CMZ : 1.06/00 28/02/94 15.44.44 by P. Schleper
*-- Author :
C-----------------------------------------------------------------------
SUBROUTINE PXZERI(N,A)
INTEGER I,N,A(N)
DO 10 I=1,N
A(I)=0
10 CONTINUE
END
*CMZ : 1.06/00 28/02/94 15.44.44 by P. Schleper
*-- Author :
C-----------------------------------------------------------------------
C This is a set of routines written by Mike Seymour to provide the
C services presumably normally provided by standard OPAL routines
C PXZERV zeroes a vector
C PXZERI zeroes a vector of integers
C PXNORV normalizes a vector
C PXADDV adds two vectors
C PXSORV sorts a vector (copied from HERWIG)
C PXANG3 finds the angle (and its cosine) between two vectors
C PXMDPI moves its argument onto the range [-pi,pi)
C-----------------------------------------------------------------------
SUBROUTINE PXZERV(N,A)
INTEGER I,N
DOUBLE PRECISION A(N)
DO 10 I=1,N
A(I)=0
10 CONTINUE
END
*-- Author :
C-----------------------------------------------------------------------
SUBROUTINE PXADDV(N,A,B,C,ITERR)
INTEGER I,N,ITERR
DOUBLE PRECISION A(N),B(N),C(N)
DO 10 I=1,N
C(I)=A(I)+B(I)
10 CONTINUE
END
*CMZ : 1.06/00 28/02/94 15.44.44 by P. Schleper
*-- Author :
C-----------------------------------------------------------------------
SUBROUTINE PXANG3(A,B,COST,THET,ITERR)
INTEGER ITERR
DOUBLE PRECISION A(3),B(3),C,COST,THET
C=(A(1)**2+A(2)**2+A(3)**2)*(B(1)**2+B(2)**2+B(3)**2)
IF (C.LE.0) RETURN
C=1/SQRT(C)
COST=(A(1)*B(1)+A(2)*B(2)+A(3)*B(3))*C
THET=ACOS(COST)
END
*CMZ : 1.06/00 14/03/94 15.41.57 by P. Schleper
*-- Author : P. Schleper 28/02/94
LOGICAL FUNCTION PXNEW(TSTLIS,JETLIS,NTRAK,NJET)
*
INTEGER MXTRAK,MXPROT
PARAMETER (MXTRAK=5000,MXPROT=5000)
INTEGER NTRAK,NJET
*** Note that although JETLIS is assumed to be a 2d array, it
*** it is used as 1d in this routine for efficiency
LOGICAL TSTLIS(MXTRAK),JETLIS(MXPROT*MXTRAK)
*** Checks to see if TSTLIS entries correspond to a jet already found
*** and entered in JETLIS
INTEGER N, I, IN
LOGICAL MATCH
*
PXNEW = .TRUE.
DO 100 I = 1,NJET
MATCH = .TRUE.
IN=I-MXPROT
DO 110 N = 1,NTRAK
IN=IN+MXPROT
IF(TSTLIS(N).NEQV.JETLIS(IN)) THEN
MATCH = .FALSE.
GO TO 100
ENDIF
110 CONTINUE
IF (MATCH) THEN
PXNEW = .FALSE.
RETURN
ENDIF
100 CONTINUE
RETURN
END
*CMZ : 1.06/00 14/03/94 15.41.57 by P. Schleper
*-- Author : P. Schleper 28/02/94
LOGICAL FUNCTION PXSAME(LIST1,LIST2,N)
*
LOGICAL LIST1(*),LIST2(*)
INTEGER N
*** Returns T if the first N elements of LIST1 are the same as the
*** first N elements of LIST2.
INTEGER I
*
PXSAME = .TRUE.
DO 100 I = 1,N
IF ( LIST1(I).NEQV.LIST2(I) ) THEN
PXSAME = .FALSE.
RETURN
ENDIF
100 CONTINUE
RETURN
END
*CMZ : 1.06/00 28/02/94 15.44.44 by P. Schleper
*-- Author :
C-----------------------------------------------------------------------
FUNCTION PXMDPI(PHI)
IMPLICIT NONE
C---RETURNS PHI, MOVED ONTO THE RANGE [-PI,PI)
DOUBLE PRECISION PXMDPI,PHI,PI,TWOPI,THRPI,EPS
PARAMETER (PI=3.141592654,TWOPI=6.283185307,THRPI=9.424777961)
PARAMETER (EPS=1E-15)
PXMDPI=PHI
IF (PXMDPI.LE.PI) THEN
IF (PXMDPI.GT.-PI) THEN
GOTO 100
ELSEIF (PXMDPI.GT.-THRPI) THEN
PXMDPI=PXMDPI+TWOPI
ELSE
PXMDPI=-MOD(PI-PXMDPI,TWOPI)+PI
ENDIF
ELSEIF (PXMDPI.LE.THRPI) THEN
PXMDPI=PXMDPI-TWOPI
ELSE
PXMDPI=MOD(PI+PXMDPI,TWOPI)-PI
ENDIF
100 IF (ABS(PXMDPI).LT.EPS) PXMDPI=0
END
|